On the Complexity of the Classification Problem for Torsion-Free Abelian Groups of Finite Rank

2001 ◽  
Vol 7 (3) ◽  
pp. 329-344 ◽  
Author(s):  
Simon Thomas

In this paper, we shall discuss some recent contributions to the project [15, 14, 2, 18, 22, 23] of explaining why no satisfactory system of complete invariants has yet been found for the torsion-free abelian groups of finite rank n ≥ 2. Recall that, up to isomorphism, the torsion-free abelian groups of rank n are exactly the additive subgroups of the n-dimensional vector space ℚn which contain n linearly independent elements. Thus the collection of torsion-free abelian groups of rank at most n can be naturally identified with the set S (ℚn) of all nontrivial additive subgroups of ℚn. In 1937, Baer [4] solved the classification problem for the class S(ℚ)of rank 1 groups as follows.Let ℙ be the set of primes. If G is a torsion-free abelian group and 0 ≠ x ϵ G, then the p-height of x is defined to behx(p) = sup{n ϵ ℕ ∣ There exists y ϵ G such that pny = x} ϵ ℕ ∪{∞}; and the characteristic χ (x) of x is defined to be the function

1969 ◽  
Vol 12 (4) ◽  
pp. 479-480 ◽  
Author(s):  
H. Heilbronn ◽  
P. Scherk

Let A, B, denote two non-void finite complexes (= subsets) of the torsion free abelian group G,Let d(A),… denote the maximum number of linearly independent elements of A,… and let n = n(A, B) denote the number of elements of A + B whose representation in the form a + b is unique. In the preceding paper, Tarwater and Entringer [1] proved that n ≥ d(A).


Author(s):  
Oteo Mutzbauer

AbstractA composition sequence for a torsion-free abelian group A is an increasing sequenceof pure subgroups with rank 1 quotients and union A. Properties of A can be described by the sequence of types of these quotients. For example, if A is uniform, that is all the types in some sequence are equal, then A is complete decomposable if it is homogeneous. If A has finite rank and all permutations ofone of its type sequences can be realized, then A is quasi-isomorphic to a direct sum of uniform groups.


1989 ◽  
Vol 39 (1) ◽  
pp. 21-24 ◽  
Author(s):  
H.P. Goeters ◽  
C. Vinsonhaler ◽  
W. Wickless

Let G be a torsion-free abelian group of finite rank n and let F be a full free subgroup of G. Then G/F is isomorphic to T1 ⊕ … ⊕ Tn, where T1 ⊆ T2 ⊆ … ⊆ Tn ⊆ ℚ/ℤ. It is well known that type T1 = inner type G and type Tn = outer type G. In this note we give two characterisations of type Ti for 1 < i < n.


2018 ◽  
Vol 18 (01) ◽  
pp. 1850002
Author(s):  
Alexander G. Melnikov

We prove that for any computable successor ordinal of the form [Formula: see text] [Formula: see text] limit and [Formula: see text] there exists computable torsion-free abelian group [Formula: see text]TFAG[Formula: see text] that is relatively [Formula: see text] -categorical and not [Formula: see text] -categorical. Equivalently, for any such [Formula: see text] there exists a computable TFAG whose initial segments are uniformly described by [Formula: see text] infinitary computable formulae up to automorphism (i.e. it has a c.e. uniformly [Formula: see text]-Scott family), and there is no syntactically simpler (c.e.) family of formulae that would capture these orbits. As far as we know, the problem of finding such optimal examples of (relatively) [Formula: see text]-categorical TFAGs for arbitrarily large [Formula: see text] was first raised by Goncharov at least 10 years ago, but it has resisted solution (see e.g. Problem 7.1 in survey [Computable abelian groups, Bull. Symbolic Logic 20(3) (2014) 315–356]). As a byproduct of the proof, we introduce an effective functor that transforms a [Formula: see text]-computable worthy labeled tree (to be defined) into a computable TFAG. We expect that this technical result will find further applications not necessarily related to categoricity questions.


2012 ◽  
Vol 77 (4) ◽  
pp. 1067-1100 ◽  
Author(s):  
Brooke M. Andersen ◽  
Asher M. Kach ◽  
Alexander G. Melnikov ◽  
Reed Solomon

AbstractWe show, for each computable ordinal α and degree a > 0(α), the existence of a torsion-free abelian group with proper αth jump degree a.


1969 ◽  
Vol 12 (4) ◽  
pp. 475-478 ◽  
Author(s):  
J. D. Tarwater ◽  
R. C. Entringer

The number of elements in the sum A + B of two complexes A and B of a group G which have multiple representations a + b = a '+ b' has been investigated by Scherk and Kemperman [1]. Kemperman [2] appealed to transfinite techniques (to order G) to prove:If G is a torsion-free abelian group with finite subsets A and B with | B | ≥ 2, then at least two elements c of A + B admit exactly one representation c = a + b.


1969 ◽  
Vol 66 (2) ◽  
pp. 239-240 ◽  
Author(s):  
A. L. S. Corner

According to well-known theorems of Kaplansky and Baer–Kulikov–Kapla nsky–Fuchs (4, 2), the class of direct sums of countable Abelian groups and the class of direct sums of torsion-free Abelian groups of rank 1 are both closed under the formation of direct summands. In this note I give an example to show that the class of direct sums of torsion-free Abelian groups of finite rank does not share this closure property: more precisely, there exists a torsion-free Abelian group G which can be written both as a direct sum G = A⊕B of 2 indecomposable groups A, B of rank ℵ0 and as a direct sum G = ⊕n ε zCn of ℵ0 indecomposable groups Cn (nεZ) of rank 2, where Z is the set of all integers.


Sign in / Sign up

Export Citation Format

Share Document