A note on the queueing systems GI/D/1 and D/G/1

1970 ◽  
Vol 7 (2) ◽  
pp. 465-468 ◽  
Author(s):  
A. G. Pakes

In this note we adopt the notation and terminology of Kingman (1966) without further comment. For the general single server queue one has For the queueing systems GI/D/1 and D/G/1 we shall show that it is possible to make use of the special form of the service time and inter-arrival time distributions, respectively, to evaluate the right hand side of (1). A similar evaluation applies to the limiting distribution when it exists. The results obtained could also be obtained from those of Finch (1969) and Henderson and Finch (1970) by using suitable limiting arguments.

1970 ◽  
Vol 7 (02) ◽  
pp. 465-468
Author(s):  
A. G. Pakes

In this note we adopt the notation and terminology of Kingman (1966) without further comment. For the general single server queue one has For the queueing systems GI/D/1 and D/G/1 we shall show that it is possible to make use of the special form of the service time and inter-arrival time distributions, respectively, to evaluate the right hand side of (1). A similar evaluation applies to the limiting distribution when it exists. The results obtained could also be obtained from those of Finch (1969) and Henderson and Finch (1970) by using suitable limiting arguments.


1969 ◽  
Vol 6 (3) ◽  
pp. 708-710 ◽  
Author(s):  
P. D. Finch

In this note we adopt the notation and terminology of Kingman (1966) without further comment. For the general single server queue one has For the queueing system GI/Ek/1 it is possible to make use of the particular nature of the service time distribution to evaluate the right-hand side of Equation (1) in terms of the k roots of a certain equation. This evaluation is carried out in detail in Prabhu (1965) to which reference should be made for the technicalities involved. A similar evaluation applies to the limiting distribution when it exists. However, the resulting expression again involves the k roots of a certain equation. In this note we draw attention to an alternative procedure which does not involve the calculation of roots. We remark that a similar, but slightly different, procedure can be used in the study of the queueing system Ek/GI/1. Details of this will be presented in a separate note.


1969 ◽  
Vol 6 (03) ◽  
pp. 708-710
Author(s):  
P. D. Finch

In this note we adopt the notation and terminology of Kingman (1966) without further comment. For the general single server queue one has For the queueing system GI/Ek/1 it is possible to make use of the particular nature of the service time distribution to evaluate the right-hand side of Equation (1) in terms of the k roots of a certain equation. This evaluation is carried out in detail in Prabhu (1965) to which reference should be made for the technicalities involved. A similar evaluation applies to the limiting distribution when it exists. However, the resulting expression again involves the k roots of a certain equation. In this note we draw attention to an alternative procedure which does not involve the calculation of roots. We remark that a similar, but slightly different, procedure can be used in the study of the queueing system Ek/GI/1. Details of this will be presented in a separate note.


1965 ◽  
Vol 2 (2) ◽  
pp. 462-466 ◽  
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


2018 ◽  
Vol 189 ◽  
pp. 02006 ◽  
Author(s):  
S K Koh ◽  
C H Chin ◽  
Y F Tan ◽  
L E Teoh ◽  
A H Pooi ◽  
...  

In this paper, a single-server queue with negative customers is considered. The arrival of a negative customer will remove one positive customer that is being served, if any is present. An alternative approach will be introduced to derive a set of equations which will be solved to obtain the stationary queue length distribution. We assume that the service time distribution tends to a constant asymptotic rate when time t goes to infinity. This assumption will allow for finding the stationary queue length of queueing systems with non-exponential service time distributions. Numerical examples for gamma distributed service time with fractional value of shape parameter will be presented in which the steady-state distribution of queue length with such service time distributions may not be easily computed by most of the existing analytical methods.


1964 ◽  
Vol 1 (2) ◽  
pp. 369-384 ◽  
Author(s):  
A. M. Hasofer

In this paper, a single-server queue with non-homogeneous Poisson input and general service time is considered. Particular attention is given to the case where the parameter of the Poisson input λ(t) is a periodic function of the time. The approach is an extension of the work of Takács and Reich . The main result of the investigation is that under certain conditions on the distribution of the service time, the form of the function λ(t) and the distribution of the waiting time at t = 0, the probability of a server being idle P0 and the Laplace transform Ω of the waiting time are both asymptotically periodic in t. Putting where b(t) is a periodic function of time, it is shown that both Po and Ω can be expanded in a power series in z, and a method for calculating explicitly the asymptotic values of the leading terms is obtained.In many practical queueing problems, it is expected that the probability of arrivals will vary periodically. For example, in restaurants or at servicestations arrivals are more probable at rush hours than at slack periods, and rush hours are repeated day after day


1965 ◽  
Vol 2 (02) ◽  
pp. 462-466
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


1964 ◽  
Vol 1 (02) ◽  
pp. 369-384 ◽  
Author(s):  
A. M. Hasofer

In this paper, a single-server queue with non-homogeneous Poisson input and general service time is considered. Particular attention is given to the case where the parameter of the Poisson input λ(t) is a periodic function of the time. The approach is an extension of the work of Takács and Reich . The main result of the investigation is that under certain conditions on the distribution of the service time, the form of the function λ(t) and the distribution of the waiting time at t = 0, the probability of a server being idle P 0 and the Laplace transform Ω of the waiting time are both asymptotically periodic in t. Putting where b(t) is a periodic function of time, it is shown that both P o and Ω can be expanded in a power series in z, and a method for calculating explicitly the asymptotic values of the leading terms is obtained. In many practical queueing problems, it is expected that the probability of arrivals will vary periodically. For example, in restaurants or at servicestations arrivals are more probable at rush hours than at slack periods, and rush hours are repeated day after day


Sign in / Sign up

Export Citation Format

Share Document