scholarly journals Stationary queue length of a single-server queue with negative arrivals and nonexponential service time distributions

2018 ◽  
Vol 189 ◽  
pp. 02006 ◽  
Author(s):  
S K Koh ◽  
C H Chin ◽  
Y F Tan ◽  
L E Teoh ◽  
A H Pooi ◽  
...  

In this paper, a single-server queue with negative customers is considered. The arrival of a negative customer will remove one positive customer that is being served, if any is present. An alternative approach will be introduced to derive a set of equations which will be solved to obtain the stationary queue length distribution. We assume that the service time distribution tends to a constant asymptotic rate when time t goes to infinity. This assumption will allow for finding the stationary queue length of queueing systems with non-exponential service time distributions. Numerical examples for gamma distributed service time with fractional value of shape parameter will be presented in which the steady-state distribution of queue length with such service time distributions may not be easily computed by most of the existing analytical methods.

1997 ◽  
Vol 34 (03) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


1999 ◽  
Vol 36 (3) ◽  
pp. 907-918 ◽  
Author(s):  
J. R. Artalejo ◽  
A. Gomez-Corral

There is a growing interest in queueing systems with negative arrivals; i.e. where the arrival of a negative customer has the effect of deleting some customer in the queue. Recently, Harrison and Pitel (1996) investigated the queue length distribution of a single server queue of type M/G/1 with negative arrivals. In this paper we extend the analysis to the context of queueing systems with request repeated. We show that the limiting distribution of the system state can still be reduced to a Fredholm integral equation. We solve such an equation numerically by introducing an auxiliary ‘truncated’ system which can easily be evaluated with the help of a regenerative approach.


1999 ◽  
Vol 36 (03) ◽  
pp. 907-918 ◽  
Author(s):  
J. R. Artalejo ◽  
A. Gomez-Corral

There is a growing interest in queueing systems with negative arrivals; i.e. where the arrival of a negative customer has the effect of deleting some customer in the queue. Recently, Harrison and Pitel (1996) investigated the queue length distribution of a single server queue of type M/G/1 with negative arrivals. In this paper we extend the analysis to the context of queueing systems with request repeated. We show that the limiting distribution of the system state can still be reduced to a Fredholm integral equation. We solve such an equation numerically by introducing an auxiliary ‘truncated’ system which can easily be evaluated with the help of a regenerative approach.


1997 ◽  
Vol 34 (3) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Siew Khew Koh ◽  
Ah Hin Pooi ◽  
Yi Fei Tan

Consider the single server queue in which the system capacity is infinite and the customers are served on a first come, first served basis. Suppose the probability density functionf(t)and the cumulative distribution functionF(t)of the interarrival time are such that the ratef(t)/1-F(t)tends to a constant ast→∞, and the rate computed from the distribution of the service time tends to another constant. When the queue is in a stationary state, we derive a set of equations for the probabilities of the queue length and the states of the arrival and service processes. Solving the equations, we obtain approximate results for the stationary probabilities which can be used to obtain the stationary queue length distribution and waiting time distribution of a customer who arrives when the queue is in the stationary state.


2008 ◽  
Vol 40 (2) ◽  
pp. 548-577 ◽  
Author(s):  
David Gamarnik ◽  
Petar Momčilović

We consider a multiserver queue in the Halfin-Whitt regime: as the number of serversngrows without a bound, the utilization approaches 1 from below at the rateAssuming that the service time distribution is lattice valued with a finite support, we characterize the limiting scaled stationary queue length distribution in terms of the stationary distribution of an explicitly constructed Markov chain. Furthermore, we obtain an explicit expression for the critical exponent for the moment generating function of a limiting stationary queue length. This exponent has a compact representation in terms of three parameters: the amount of spare capacity and the coefficients of variation of interarrival and service times. Interestingly, it matches an analogous exponent corresponding to a single-server queue in the conventional heavy-traffic regime.


1970 ◽  
Vol 7 (2) ◽  
pp. 465-468 ◽  
Author(s):  
A. G. Pakes

In this note we adopt the notation and terminology of Kingman (1966) without further comment. For the general single server queue one has For the queueing systems GI/D/1 and D/G/1 we shall show that it is possible to make use of the special form of the service time and inter-arrival time distributions, respectively, to evaluate the right hand side of (1). A similar evaluation applies to the limiting distribution when it exists. The results obtained could also be obtained from those of Finch (1969) and Henderson and Finch (1970) by using suitable limiting arguments.


2003 ◽  
Vol 40 (01) ◽  
pp. 200-225 ◽  
Author(s):  
A. A. Borovkov ◽  
O. J. Boxma ◽  
Z. Palmowski

This paper is devoted to a study of the integral of the workload process of the single server queue, in particular during one busy period. Firstly, we find asymptotics of the area 𝒜 swept under the workload process W(t) during the busy period when the service time distribution has a regularly varying tail. We also investigate the case of a light-tailed service time distribution. Secondly, we consider the problem of obtaining an explicit expression for the distribution of 𝒜. In the general GI/G/1 case, we use a sequential approximation to find the Laplace—Stieltjes transform of 𝒜. In the M/M/1 case, this transform is obtained explicitly in terms of Whittaker functions. Thirdly, we consider moments of 𝒜 in the GI/G/1 queue. Finally, we show asymptotic normality of .


2003 ◽  
Vol 40 (1) ◽  
pp. 200-225 ◽  
Author(s):  
A. A. Borovkov ◽  
O. J. Boxma ◽  
Z. Palmowski

This paper is devoted to a study of the integral of the workload process of the single server queue, in particular during one busy period. Firstly, we find asymptotics of the area 𝒜 swept under the workload process W(t) during the busy period when the service time distribution has a regularly varying tail. We also investigate the case of a light-tailed service time distribution. Secondly, we consider the problem of obtaining an explicit expression for the distribution of 𝒜. In the general GI/G/1 case, we use a sequential approximation to find the Laplace—Stieltjes transform of 𝒜. In the M/M/1 case, this transform is obtained explicitly in terms of Whittaker functions. Thirdly, we consider moments of 𝒜 in the GI/G/1 queue. Finally, we show asymptotic normality of .


Sign in / Sign up

Export Citation Format

Share Document