Malthusian behaviour of the critical and subcritical age-dependent branching processes with arbitrary state space

1976 ◽  
Vol 13 (3) ◽  
pp. 455-465
Author(s):  
D. I. Saunders

For the age-dependent branching process with arbitrary state space let M(x, t, A) be the expected number of individuals alive at time t with states in A given an initial individual at x. Subject to various conditions it is shown that M(x, t, A)e–at converges to a non-trivial limit where α is the Malthusian parameter (α = 0 for the critical case, and is negative in the subcritical case). The method of proof also yields rates of convergence.

1976 ◽  
Vol 13 (03) ◽  
pp. 455-465
Author(s):  
D. I. Saunders

For the age-dependent branching process with arbitrary state space let M(x, t, A) be the expected number of individuals alive at time t with states in A given an initial individual at x. Subject to various conditions it is shown that M(x, t, A)e–at converges to a non-trivial limit where α is the Malthusian parameter (α = 0 for the critical case, and is negative in the subcritical case). The method of proof also yields rates of convergence.


1978 ◽  
Vol 10 (04) ◽  
pp. 744-763 ◽  
Author(s):  
L. Edler

The general age-dependent branching model of Crump, Mode and Jagers will be generalized towards generation-dependent varying lifespan and reproduction distributions. A system of integral and renewal equations is established for the generating functions and the first two moments of Zi (t) (the number of individuals alive at time t), if the population was initiated at time 0 by one ancestor of age 0 from generation i. Convergence in quadratic mean of Zi (t)/EZi (t) as t tends to infinity is obtained if the generation-dependent reproduction functions converge to a supercritical one. In particular, if this convergence is slow enough t γ exp (αt) is the asymptotic behavior of EZi (t) for t tending to infinity, where γ is a positive real number and α the Malthusian parameter of growth of the limiting reproduction function.


1973 ◽  
Vol 10 (4) ◽  
pp. 739-747 ◽  
Author(s):  
P. J. Brockwell ◽  
W. H. Kuo

A supercritical age-dependent branching process is considered in which the lifespan of each individual is composed of four phases whose durations have joint probability density f(x1, x2, x3, x4). Starting with a single individual of age zero at time zero we consider the asymptotic behaviour as t→ ∞ of the random variable Z(4) (a0,…, an, t) defined as the number of individuals in phase 4 at time t for which the elapsed phase durations Y01,…, Y04,…, Yi1,…, Yi4,…, Yn4 of the individual itself and its first n ancestors satisfy the inequalities Yij ≦ aij, i = 0,…, n, j = 1,…, 4. The application of the results to the analysis of cell-labelling experiments is described. Finally we state an analogous result which defines (conditional on eventual non-extinction of the population) the asymptotic joint distribution of the phase and elapsed phase durations of an individual drawn at random from the population and the phase durations of its ancestors.


1974 ◽  
Vol 11 (4) ◽  
pp. 695-702 ◽  
Author(s):  
K. B. Athreya ◽  
P. R. Parthasarathy ◽  
G. Sankaranarayanan

A branching process with immigration of the following type is considered. For every i, a random number Ni of particles join the system at time . These particles evolve according to a one-dimensional age-dependent branching process with offspring p.g.f. and life time distribution G(t). Assume . Then it is shown that Z(t) e–αt converges in distribution to an extended real-valued random variable Y where a is the Malthusian parameter. We do not require the sequences {τi} or {Ni} to be independent or identically distributed or even mutually independent.


1976 ◽  
Vol 13 (2) ◽  
pp. 239-246 ◽  
Author(s):  
R. A. Doney

We consider a p-type general age-dependent branching process (g.a.d.b.p) in which each individual lives a random length of time and at random times during its life and possibly after its death gives birth to offspring. If this process starts with one individual of type i then it turns out that the number of individuals of type i alive at time t forms a one-type g.a.d.b.p. This fact is exploited to establish a NASC for a properly normalized, supercritical p-type g.a.d.b.p. to have a limiting distribution which is not degenerate at zero.


1976 ◽  
Vol 13 (1) ◽  
pp. 138-143 ◽  
Author(s):  
D. R. Grey

It is shown that if ϕ is a given function out of a large class satisfying a certain regularity condition, then a supercritical age-dependent branching process {Z(t)} exists with deterministic immigration and given life-length and family-size distributions such that Z(t)/(eat ϕ(t)) converges in probability to a non-zero constant, a being the appropriate Malthusian parameter.As an easy corollary one discovers the asymptotic behaviour of some processes with random immigration.


1976 ◽  
Vol 8 (1) ◽  
pp. 88-104 ◽  
Author(s):  
John M. Holte

Let Z(t) be the population size at time t in a general age-dependent branching process (as defined by Crump and Mode, or Jagers) in which the number N of offspring of a parent has expected value 1 (critical case). Assuming positivity and finiteness of the second moments of N, of the lifespan distribution and of the expected number of births per parent as a function of age (also assumed to be strongly non-lattice), the distribution of Z(t)/t conditioned on non-extinction at time t is asymptotically exponential. The main step in the proof is a comparison lemma for the probability generating functions of Z(t) and of the embedded generation process.


Sign in / Sign up

Export Citation Format

Share Document