malthusian parameter
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3143
Author(s):  
István Fazekas ◽  
Attila Barta

A continuous-time network evolution model is considered. The evolution of the network is based on 2- and 3-interactions. 2-interactions are described by edges, and 3-interactions are described by triangles. The evolution of the edges and triangles is governed by a multi-type continuous-time branching process. The limiting behaviour of the network is studied by mathematical methods. We prove that the number of triangles and edges have the same magnitude on the event of non-extinction, and it is eαt, where α is the Malthusian parameter. The probability of the extinction and the degree process of a fixed vertex are also studied. The results are illustrated by simulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Manuel De la Sen ◽  
Asier Ibeas

The main objective of this paper is to describe and interpret an SIR (Susceptible-Infectious-Recovered) epidemic model though a logistic equation, which is parameterized by a Malthusian parameter and a carrying capacity parameter, both being time-varying, in general, and then to apply the model to the COVID-19 pandemic by using some recorded data. In particular, the Malthusian parameter is related to the growth rate of the infection solution while the carrying capacity is related to its maximum reachable value. The quotient of the absolute value of the Malthusian parameter and the carrying capacity fixes the transmission rate of the disease in the simplest version of the epidemic model. Therefore, the logistic version of the epidemics’ description is attractive since it offers an easy interpretation of the data evolution especially when the pandemic outbreaks. The SIR model includes recruitment, demography, and mortality parameters, and the total population minus the recovered population is not constant though time. This makes the current logistic equation to be time-varying. An estimation algorithm, which estimates the transmission rate through time from the discrete-time estimation of the parameters of the logistic equation, is proposed. The data are picked up at a set of samples which are either selected by the adaptive sampling law or allocated at constant intervals between consecutive samples. Numerical simulated examples are also discussed.


2018 ◽  
Vol 50 (A) ◽  
pp. 141-171
Author(s):  
Svante Janson

Abstract Consider a supercritical Crump‒Jagers process in which all births are at integer times (the lattice case). Let μ̂(z) be the generating function of the intensity of the offspring process, and consider the complex roots of μ̂(z)=1. The root of smallest absolute value is e-α=1∕m, where α>0 is the Malthusian parameter; let γ* be the root of second smallest absolute value. Subject to some technical conditions, the second-order fluctuations of the age distribution exhibit one of three types of behaviour: (i) when γ*>e-α∕2=m-1∕2, they are asymptotically normal; (ii) when γ*=e-α∕2, they are still asymptotically normal, but with a larger variance; and (iii) when γ*<e-α∕2, the fluctuations are in general oscillatory and (degenerate cases excluded) do not converge in distribution. This trichotomy is similar to what has been observed in related situations, such as some other branching processes and for Pólya urns. The results lead to a symbolic calculus describing the limits. The asymptotic results also apply to the total of other (random) characteristics of the population.


Author(s):  
K.V. Shlufman ◽  
G.P. Neverova ◽  
E.Ya. Frisman

The paper investigates the phase multistability of dynamical modes of the Ricker model with 2-year periodic Malthusian parameter. It is shown that both the variable perturbation and the phase shift of the Malthusian parameter can lead to a phase shift or a change in the dynamic mode observed. The possibility of switches between different dynamic modes is due to multistability, since the model has two different stable 2-cycles. The first stable 2-cycle is the result of transcritical bifurcation and is synchronous to the oscillations of the Malthusian parameter. The second stable 2-cycle arises as a result of the tangent bifurcation and is asynchronous to the oscillations of the Malthusian parameter. This indicates that two-year fluctuations in the population size can be both synchronous and asynchronous to the fluctuations in the environment. The phase shift of the Malthusian parameter causes a phase shift in the stable 4-cycle of the first bifurcation series to one or even three elements of the 4-cycle. The phase shift to two elements of this 4-cycle is possible due to a change in the half-amplitude of the Malthusian parameter oscillation or the variable perturbation. At the same time, the longer period of the cycle, the more phases with their attraction basins it has, and the smaller the threshold values above which shift from the attraction basin to another one occur. As a result, in the case of cycles with long period (for example, 8-cycle) perturbations, that stable cycles with short period are able to "absorb", can cause different phase transitions, which significantly complicates the dynamics of the model trajectory and, as a consequence, the identification of the dynamic mode observed.


2017 ◽  
Vol 13 (3) ◽  
pp. 363-380 ◽  
Author(s):  
К.В. Шлюфман ◽  
◽  
Г.П. Неверова ◽  
Е.Я. Фрисман ◽  
◽  
...  

2016 ◽  
pp. 553-565 ◽  
Author(s):  
К.В. Шлюфман ◽  
◽  
Г.П. Неверова ◽  
Е.Я. Фрисман ◽  
◽  
...  

2009 ◽  
Vol 7 (47) ◽  
pp. 873-885 ◽  
Author(s):  
O. Diekmann ◽  
J. A. P. Heesterbeek ◽  
M. G. Roberts

The basic reproduction number ℛ 0 is arguably the most important quantity in infectious disease epidemiology. The next-generation matrix (NGM) is the natural basis for the definition and calculation of ℛ 0 where finitely many different categories of individuals are recognized. We clear up confusion that has been around in the literature concerning the construction of this matrix, specifically for the most frequently used so-called compartmental models. We present a detailed easy recipe for the construction of the NGM from basic ingredients derived directly from the specifications of the model. We show that two related matrices exist which we define to be the NGM with large domain and the NGM with small domain . The three matrices together reflect the range of possibilities encountered in the literature for the characterization of ℛ 0 . We show how they are connected and how their construction follows from the basic model ingredients, and establish that they have the same non-zero eigenvalues, the largest of which is the basic reproduction number ℛ 0 . Although we present formal recipes based on linear algebra, we encourage the construction of the NGM by way of direct epidemiological reasoning, using the clear interpretation of the elements of the NGM and of the model ingredients. We present a selection of examples as a practical guide to our methods. In the appendix we present an elementary but complete proof that ℛ 0 defined as the dominant eigenvalue of the NGM for compartmental systems and the Malthusian parameter r , the real-time exponential growth rate in the early phase of an outbreak, are connected by the properties that ℛ 0 > 1 if and only if r > 0, and ℛ 0 = 1 if and only if r = 0.


Sign in / Sign up

Export Citation Format

Share Document