Limiting diffusions for the conditioned M/G/1 queue

1974 ◽  
Vol 11 (2) ◽  
pp. 355-362 ◽  
Author(s):  
Douglas P. Kennedy

The virtual waiting time process, W(t), in the M/G/1 queue is investigated under the condition that the initial busy period terminates but has not done so by time n ≥ t. It is demonstrated that, as n → ∞, W(t), suitably scaled and normed, converges to the unsigned Brownian excursion process or a modification of that process depending whether ρ ≠ 1 or ρ = 1, where ρ is the traffic intensity.

1974 ◽  
Vol 11 (02) ◽  
pp. 355-362 ◽  
Author(s):  
Douglas P. Kennedy

The virtual waiting time process, W(t), in the M/G/1 queue is investigated under the condition that the initial busy period terminates but has not done so by time n ≥ t. It is demonstrated that, as n → ∞, W(t), suitably scaled and normed, converges to the unsigned Brownian excursion process or a modification of that process depending whether ρ ≠ 1 or ρ = 1, where ρ is the traffic intensity.


1977 ◽  
Vol 9 (01) ◽  
pp. 169-186 ◽  
Author(s):  
Teunis J. Ott

Let X(t) be the virtual waiting-time process of a stable M/G/1 queue. Let R(t) be the covariance function of the stationary process X(t), B(t) the busy-period distribution of X(t); and let E(t) = P{X(t) = 0|X(0) = 0}. For X(t) some heavy-traffic results are given, among which are limiting expressions for R(t) and its derivatives and for B(t) and E(t). These results are used to find the covariance function of stationary Brownian motion on [0, ∞).


1972 ◽  
Vol 9 (01) ◽  
pp. 117-128 ◽  
Author(s):  
E. K. Kyprianou

This paper studies the existence, in a stable GI/M/1 queue, of the limit as t → ∞ of the distribution of the virtual waiting time process at time t conditioned on the event that at no time in the interval [0, t] the queue has become empty. The conditional limit distribution obtained when the traffic intensity is strictly less than one is the weighted sum of an exponential and a gamma distribution. Similar conditional limit distributions are obtained for the queue size process and the waiting time process as defined by Prabhu (1964).


1972 ◽  
Vol 9 (1) ◽  
pp. 117-128 ◽  
Author(s):  
E. K. Kyprianou

This paper studies the existence, in a stable GI/M/1 queue, of the limit as t → ∞ of the distribution of the virtual waiting time process at time t conditioned on the event that at no time in the interval [0, t] the queue has become empty. The conditional limit distribution obtained when the traffic intensity is strictly less than one is the weighted sum of an exponential and a gamma distribution. Similar conditional limit distributions are obtained for the queue size process and the waiting time process as defined by Prabhu (1964).


1977 ◽  
Vol 9 (1) ◽  
pp. 169-186 ◽  
Author(s):  
Teunis J. Ott

Let X(t) be the virtual waiting-time process of a stable M/G/1 queue. Let R(t) be the covariance function of the stationary process X(t), B(t) the busy-period distribution of X(t); and let E(t) = P{X(t) = 0|X(0) = 0}.For X(t) some heavy-traffic results are given, among which are limiting expressions for R(t) and its derivatives and for B(t) and E(t).These results are used to find the covariance function of stationary Brownian motion on [0, ∞).


1989 ◽  
Vol 21 (02) ◽  
pp. 485-487 ◽  
Author(s):  
G. I. Falin

An analytic approach to the diffusion approximation in queueing due to Burman (1979) is applied to the M(t)/G/1/∞ queueing system with periodic Poisson arrivals. We show that under heavy traffic the virtual waiting time process can be approximated by a certain Wiener process with reflecting barrier at 0.


1969 ◽  
Vol 6 (01) ◽  
pp. 122-136 ◽  
Author(s):  
B.W. Conolly ◽  
N. Hadidi

A “correlated queue” is defined to be a queueing model in which the arrival pattern influences the service pattern or vice versa. A particular model of this nature is considered in this paper. It is such that the service time of a customer is directly proportional to the interval between his own arrival and that of his predecessor. The initial busy period, state and output processes are analyzed in detail. For completeness, a sketch is also given of the analysis of the waiting time process which forms the subject of another paper. The results are used in the analysis of the state and output processes.


1983 ◽  
Vol 20 (03) ◽  
pp. 675-688 ◽  
Author(s):  
G. Hooghiemstra

This paper is on conditioned weak limit theorems for imbedded waiting-time processes of an M/G/1 queue. More specifically we study functional limit theorems for the actual waiting-time process conditioned by the event that the number of customers in a busy period exceeds n or equals n. Attention is also paid to the actual waiting-time process with random time index. Combined with the existing literature on the subject this paper gives a complete account of the conditioned limit theorems for the actual waiting-time process of an M/G/1 queue for arbitrary traffic intensity and for a rather general class of service-time distributions. The limit processes that occur are Brownian excursion and meander, while in the case of random time index also the following limit occurs: Brownian excursion divided by an independent and uniform (0, 1) distributed random variable.


1969 ◽  
Vol 6 (1) ◽  
pp. 122-136 ◽  
Author(s):  
B.W. Conolly ◽  
N. Hadidi

A “correlated queue” is defined to be a queueing model in which the arrival pattern influences the service pattern or vice versa. A particular model of this nature is considered in this paper. It is such that the service time of a customer is directly proportional to the interval between his own arrival and that of his predecessor. The initial busy period, state and output processes are analyzed in detail. For completeness, a sketch is also given of the analysis of the waiting time process which forms the subject of another paper. The results are used in the analysis of the state and output processes.


Sign in / Sign up

Export Citation Format

Share Document