A connective constant for loop-erased self-avoiding random walk

1983 ◽  
Vol 20 (2) ◽  
pp. 264-276 ◽  
Author(s):  
Gregory F. Lawler

A ‘connective constant' is defined for self-avoiding random walk derived by erasing loops from simple random walk. For d ≧ 5, it is shown that this distribution on n-step self-avoiding paths approaches a uniform distribution in a weak sense.

1983 ◽  
Vol 20 (02) ◽  
pp. 264-276
Author(s):  
Gregory F. Lawler

A ‘connective constant' is defined for self-avoiding random walk derived by erasing loops from simple random walk. For d ≧ 5, it is shown that this distribution on n-step self-avoiding paths approaches a uniform distribution in a weak sense.


1992 ◽  
Vol 04 (02) ◽  
pp. 235-327 ◽  
Author(s):  
TAKASHI HARA ◽  
GORDON SLADE

This paper is a continuation of the companion paper [14], in which it was proved that the standard model of self-avoiding walk in five or more dimensions has the same critical behaviour as the simple random walk, assuming convergence of the lace expansion. In this paper we prove the convergence of the lace expansion, an upper and lower infrared bound, and a number of other estimates that were used in the companion paper. The proof requires a good upper bound on the critical point (or equivalently a lower bound on the connective constant). In an appendix, new upper bounds on the critical point in dimensions higher than two are obtained, using elementary methods which are independent of the lace expansion. The proof of convergence of the lace expansion is computer assisted. Numerical aspects of the proof, including methods for the numerical evaluation of simple random walk quantities such as the two-point function (or lattice Green function), are treated in an appendix.


1976 ◽  
Vol 13 (02) ◽  
pp. 355-356 ◽  
Author(s):  
Aidan Sudbury

Particles are situated on a rectangular lattice and proceed to invade each other's territory. When they are equally competitive this creates larger and larger blocks of one type as time goes by. It is shown that the expected size of such blocks is equal to the expected range of a simple random walk.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2021 ◽  
Author(s):  
Thi Thi Zin ◽  
Pyke Tin ◽  
Pann Thinzar Seint ◽  
Kosuke Sumi ◽  
Ikuo Kobayashi ◽  
...  

2010 ◽  
Vol 149 (2) ◽  
pp. 351-372
Author(s):  
WOUTER KAGER ◽  
LIONEL LEVINE

AbstractInternal diffusion-limited aggregation is a growth model based on random walk in ℤd. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in ℤ2 for which the limiting shape is a diamond. Certain of these walks—those with a directional bias toward the origin—have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.


1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


Sign in / Sign up

Export Citation Format

Share Document