On the number of times where a simple random walk reaches its maximum

1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.

1992 ◽  
Vol 29 (2) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn, are considered and their asymptotic behavior is studied.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2014 ◽  
Vol 51 (4) ◽  
pp. 1065-1080 ◽  
Author(s):  
Massimo Campanino ◽  
Dimitri Petritis

Simple random walks on a partially directed version ofZ2are considered. More precisely, vertical edges between neighbouring vertices ofZ2can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function; the perturbation probability decays according to a power law in the absolute value of the ordinate. We study the type of simple random walk that is recurrent or transient, and show that there exists a critical value of the decay power, above which it is almost surely recurrent and below which it is almost surely transient.


2007 ◽  
Vol 09 (04) ◽  
pp. 585-603 ◽  
Author(s):  
NOGA ALON ◽  
ITAI BENJAMINI ◽  
EYAL LUBETZKY ◽  
SASHA SODIN

We compute the mixing rate of a non-backtracking random walk on a regular expander. Using some properties of Chebyshev polynomials of the second kind, we show that this rate may be up to twice as fast as the mixing rate of the simple random walk. The closer the expander is to a Ramanujan graph, the higher the ratio between the above two mixing rates is. As an application, we show that if G is a high-girth regular expander on n vertices, then a typical non-backtracking random walk of length n on G does not visit a vertex more than [Formula: see text] times, and this result is tight. In this sense, the multi-set of visited vertices is analogous to the result of throwing n balls to n bins uniformly, in contrast to the simple random walk on G, which almost surely visits some vertex Ω( log n) times.


1996 ◽  
Vol 33 (2) ◽  
pp. 311-330 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

In a famous paper, Dwass (1967) proposed a method to deal with rank order statistics, which constitutes a unifying framework to derive various distributional results. In the present paper an alternative method is presented, which allows us to extend Dwass's results in several ways, namely arbitrary endpoints, horizontal steps and arbitrary probabilities for the three step types. Regarding these extensions the pertaining rank order statistics are extended as well to simple random walk statistics. This method has proved appropriate to generalize all results given by Dwass. Moreover, these discrete time results can be taken as a starting point to derive the corresponding results for randomized random walks by means of a limiting process.


1991 ◽  
Vol 28 (4) ◽  
pp. 717-726 ◽  
Author(s):  
Claude Bélisle ◽  
Julian Faraway

Recent results on the winding angle of the ordinary two-dimensional random walk on the integer lattice are reviewed. The difference between the Brownian motion winding angle and the random walk winding angle is discussed. Other functionals of the random walk, such as the maximum winding angle, are also considered and new results on their asymptotic behavior, as the number of steps increases, are presented. Results of computer simulations are presented, indicating how well the asymptotic distributions fit the exact distributions for random walks with 10m steps, for m = 2, 3, 4, 5, 6, 7.


1996 ◽  
Vol 33 (02) ◽  
pp. 331-339 ◽  
Author(s):  
W. Böhm ◽  
W. Panny

In this paper various statistics for randomized random walks and their distributions are presented. The distributional results are derived by means of a limiting procedure applied to the pertaining discrete time process, which has been considered in part I of this work (Katzenbeisser and Panny 1996). This basic approach, originally due to Meisling (1958), seems to offer certain technical advantages, since it avoids the use of Laplace transforms and is even simpler than Feller's randomization technique.


2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
José Luis Palacios

Using classical arguments we derive a formula for the moments of hitting times for an ergodic Markov chain. We apply this formula to the case of simple random walk on trees and show, with an elementary electric argument, that all the moments are natural numbers.


1992 ◽  
Vol 29 (2) ◽  
pp. 454-459
Author(s):  
Zhou Xian-Yin

In this paper, the recurrence or transience of simple random walks on some lattice fractals is investigated. As results, we obtain that the simple random walk on the pre-Sierpinski gasket inddimensions is recurrent for alld≧ 2, and on the pre-Sierpinski carpet inddimensions it is recurrent ford= 2 and transient for alld≧ 3.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950003 ◽  
Author(s):  
Bruno Rémillard ◽  
Jean Vaillancourt

Parrondo’s paradox is extended to regime switching random walks in random environments. The paradoxical behavior of the resulting random walk is explained by the effect of the random environment. Full characterization of the asymptotic behavior is achieved in terms of the dimensions of some random subspaces occurring in Oseledec’s theorem. The regime switching mechanism gives our models a richer and more complex asymptotic behavior than the simple random walks in random environments appearing in the literature, in terms of transience and recurrence.


Sign in / Sign up

Export Citation Format

Share Document