The Mk/G/∞ batch arrival queue by heterogeneous dependent demands

1994 ◽  
Vol 31 (3) ◽  
pp. 841-846 ◽  
Author(s):  
Gennadi Falin

Choi and Park [2] derived an expression for the joint stationary distribution of the number of customers of k types who arrive in batches at an infinite-server system of M/M/∞ type. We propose another method of solving this problem and extend the result to the case of general service times (not necessarily independent). We also get a transient solution. Our main result states that the k- dimensional vector of the number of customers of k types in the system is a certain linear function of a (2k – 1)-dimensional vector whose coordinates are independent Poisson random variables.

1994 ◽  
Vol 31 (03) ◽  
pp. 841-846
Author(s):  
Gennadi Falin

Choi and Park [2] derived an expression for the joint stationary distribution of the number of customers of k types who arrive in batches at an infinite-server system of M/M/∞ type. We propose another method of solving this problem and extend the result to the case of general service times (not necessarily independent). We also get a transient solution. Our main result states that the k- dimensional vector of the number of customers of k types in the system is a certain linear function of a (2 k – 1)-dimensional vector whose coordinates are independent Poisson random variables.


2017 ◽  
Vol 54 (4) ◽  
pp. 995-1007 ◽  
Author(s):  
S. Foss ◽  
A. L. Stolyar

Abstract A parallel server system with n identical servers is considered. The service time distribution has a finite mean 1 / μ, but otherwise is arbitrary. Arriving customers are routed to one of the servers immediately upon arrival. The join-idle-queue routeing algorithm is studied, under which an arriving customer is sent to an idle server, if such is available, and to a randomly uniformly chosen server, otherwise. We consider the asymptotic regime where n → ∞ and the customer input flow rate is λn. Under the condition λ / μ < ½, we prove that, as n → ∞, the sequence of (appropriately scaled) stationary distributions concentrates at the natural equilibrium point, with the fraction of occupied servers being constant at λ / μ. In particular, this implies that the steady-state probability of an arriving customer waiting for service vanishes.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


2011 ◽  
Vol 2 (4) ◽  
pp. 75-88
Author(s):  
Veena Goswami ◽  
G. B. Mund

This paper analyzes a discrete-time infinite-buffer Geo/Geo/2 queue, in which the number of servers can be adjusted depending on the number of customers in the system one at a time at arrival or at service completion epoch. Analytical closed-form solutions of the infinite-buffer Geo/Geo/2 queueing system operating under the triadic (0, Q N, M) policy are derived. The total expected cost function is developed to obtain the optimal operating (0, Q N, M) policy and the optimal service rate at minimum cost using direct search method. Some performance measures and sensitivity analysis have been presented.


2012 ◽  
Vol 49 (3) ◽  
pp. 883-887 ◽  
Author(s):  
Offer Kella

The goal is to identify the class of distributions to which the distribution of the maximum of a Lévy process with no negative jumps and negative mean (equivalently, the stationary distribution of the reflected process) belongs. An explicit new distributional identity is obtained for the case where the Lévy process is an independent sum of a Brownian motion and a general subordinator (nondecreasing Lévy process) in terms of a geometrically distributed sum of independent random variables. This generalizes both the distributional form of the standard Pollaczek-Khinchine formula for the stationary workload distribution in the M/G/1 queue and the exponential stationary distribution of a reflected Brownian motion.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018 ◽  
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


1988 ◽  
Vol 25 (01) ◽  
pp. 204-209 ◽  
Author(s):  
Ravindra M. Phatarfod

We derive the Laplace transforms of sums and weighted sums of random variables forming a Markov chain whose stationary distribution is gamma. Both seasonal and non-seasonal cases are considered. The results are applied to two problems in stochastic reservoir theory.


Sign in / Sign up

Export Citation Format

Share Document