scholarly journals The Time Dependence of a Single-Server Queue with Poisson Input and General Service Times

1962 ◽  
Vol 33 (4) ◽  
pp. 1340-1348 ◽  
Author(s):  
Lajos Takacs
1974 ◽  
Vol 11 (03) ◽  
pp. 612-617 ◽  
Author(s):  
Lajos Takács

The limiting distributions of the actual waiting time and the virtual waiting time are determined for a single-server queue with Poisson input and general service times in the case where there are two types of services and no customer can stay in the system longer than an interval of length m.


1974 ◽  
Vol 11 (3) ◽  
pp. 612-617 ◽  
Author(s):  
Lajos Takács

The limiting distributions of the actual waiting time and the virtual waiting time are determined for a single-server queue with Poisson input and general service times in the case where there are two types of services and no customer can stay in the system longer than an interval of length m.


1966 ◽  
Vol 3 (1) ◽  
pp. 202-230 ◽  
Author(s):  
Marcel F. Neuts

We assume that the successive service times in a single server queue with Poisson arrivals form an m-state semi-Markov process.The results for the M/G/1 queue are extended to this case. Both the time-dependence and the stationary solutions are discussed.


Author(s):  
Kailash C. Madan

We study the steady state behavior of a batch arrival single server queue in which the first service consisting of two stages with general service times G1 and G2 is compulsory. After completion of the two stages of the first essential service, a customer has the option of choosing one of the two types of additional service with respective general service times G1 and G2 . Just after completing both stages of first essential service with or without one of the two types of additional optional service, the server has the choice of taking an optional deterministic vacation of fixed (constant) length of time. We obtain steady state probability generating functions for the queue size for various states of the system at a random epoch of time in explicit and closed forms. The steady state results of some interesting special cases have been derived from the main results.


1966 ◽  
Vol 3 (01) ◽  
pp. 202-230 ◽  
Author(s):  
Marcel F. Neuts

We assume that the successive service times in a single server queue with Poisson arrivals form an m-state semi-Markov process. The results for the M/G/1 queue are extended to this case. Both the time-dependence and the stationary solutions are discussed.


1965 ◽  
Vol 2 (2) ◽  
pp. 462-466 ◽  
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


1989 ◽  
Vol 26 (02) ◽  
pp. 390-397 ◽  
Author(s):  
Austin J. Lemoine

This paper develops moment formulas for asymptotic workload and waiting time in a single-server queue with periodic Poisson input and general service distribution. These formulas involve the corresponding moments of waiting-time (workload) for the M/G/1 system with the same average arrival rate and service distribution. In certain cases, all the terms in the formulas can be computed exactly, including moments of workload at each ‘time of day.' The approach makes use of an asymptotic version of the Takács [12] integro-differential equation, together with representation results of Harrison and Lemoine [3] and Lemoine [6].


Sign in / Sign up

Export Citation Format

Share Document