Arithmetic Functions

Keyword(s):  
Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

AbstractIn this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions g and h, where g is normalized, of moderate growth, and $$0<h(n) \le h(n+1)$$ 0 < h ( n ) ≤ h ( n + 1 ) . We put $$P_0^{g,h}(x)=1$$ P 0 g , h ( x ) = 1 and $$\begin{aligned} P_n^{g,h}(x) := \frac{x}{h(n)} \sum _{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{aligned}$$ P n g , h ( x ) : = x h ( n ) ∑ k = 1 n g ( k ) P n - k g , h ( x ) . As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind $$\eta $$ η -function. Here, g is the sum of divisors and h the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invariant, and Chebyshev polynomials of the second kind.


1985 ◽  
Vol 25 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Z. Kryžius
Keyword(s):  

Author(s):  
Seiji Kuga

In this paper, we give linear relations between the Fourier coefficients of a special Hilbert modular form of half integral weight and some arithmetic functions. As a result, we have linear relations for the special [Formula: see text]-values over certain totally real number fields.


2004 ◽  
Vol 89 (516) ◽  
pp. 403-408
Author(s):  
P. G. Brown

In many of the basic courses in Number Theory, Finite Mathematics and Cryptography we come across the so-called arithmetic functions such as ϕn), σ(n), τ(n), μ(n), etc, whose domain is the set of natural numbers. These functions are well known and evaluated through the prime factor decomposition of n. It is less well known that these functions possess inverses (with respect to Dirichlet multiplication) which have interesting properties and applications.


Sign in / Sign up

Export Citation Format

Share Document