fourier coefficients
Recently Published Documents


TOTAL DOCUMENTS

1469
(FIVE YEARS 207)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alejandro Molano

Purpose In this paper, the authors take the first step in the study of constructive methods by using Sobolev polynomials.Design/methodology/approach To do that, the authors use the connection formulas between Sobolev polynomials and classical Laguerre polynomials, as well as the well-known Fourier coefficients for these latter.Findings Then, the authors compute explicit formulas for the Fourier coefficients of some families of Laguerre–Sobolev type orthogonal polynomials over a finite interval. The authors also describe an oscillatory region in each case as a reasonable choice for approximation purposes.Originality/value In order to take the first step in the study of constructive methods by using Sobolev polynomials, this paper deals with Fourier coefficients for certain families of polynomials orthogonal with respect to the Sobolev type inner product. As far as the authors know, this particular problem has not been addressed in the existing literature.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Vakhtang Tsagareishvili

Abstract In the paper we consider the properties of Fourier coefficients of functions that possess derivatives of bounded variation. We investigate the convergence of the special series of Fourier coefficients with respect to general orthonormal systems (ONS). The obtained results are the best possible. We also describe the behavior of subsequences of general ONS.


2022 ◽  
Vol 15 (1) ◽  
pp. 1-9
Author(s):  
Haoyu Jiang

Abstract. High-frequency parts of ocean wave spectra are strongly coupled to the local wind. Measurements of ocean wave spectra can be used to estimate sea surface winds. In this study, two deep neural networks (DNNs) were used to estimate the wind speed and direction from the first five Fourier coefficients from buoys. The DNNs were trained by wind and wave measurements from more than 100 meteorological buoys during 2014–2018. It is found that the wave measurements can best represent the wind information about 40 min previously because the high-frequency portion of the wave spectrum integrates preceding wind conditions. The overall root-mean-square error (RMSE) of estimated wind speed is ∼1.1 m s−1, and the RMSE of the wind direction is ∼ 14∘ when wind speed is 7–25 m s−1. This model can be used not only for the wind estimation for compact wave buoys but also for the quality control of wind and wave measurements from meteorological buoys.


2021 ◽  
Vol 47 (4) ◽  
pp. 1-24
Author(s):  
Quoc T. Le Gia ◽  
Ming Li ◽  
Yu Guang Wang

Vector spherical harmonics on the unit sphere of ℝ 3 have broad applications in geophysics, quantum mechanics, and astrophysics. In the representation of a tangent vector field, one needs to evaluate the expansion and the Fourier coefficients of vector spherical harmonics. In this article, we develop fast algorithms (FaVeST) for vector spherical harmonic transforms on these evaluations. The forward FaVeST evaluates the Fourier coefficients and has a computational cost proportional to N log √ N for N number of evaluation points. The adjoint FaVeST, which evaluates a linear combination of vector spherical harmonics with a degree up to ⊡ M for M evaluation points, has cost proportional to M log √ M . Numerical examples of simulated tangent fields illustrate the accuracy, efficiency, and stability of FaVeST.


2021 ◽  
Vol 13 (4) ◽  
pp. 1-40
Author(s):  
Srinivasan Arunachalam ◽  
Sourav Chakraborty ◽  
Michal Koucký ◽  
Nitin Saurabh ◽  
Ronald De Wolf

Given a Boolean function f:{ -1,1} ^{n}→ { -1,1, define the Fourier distribution to be the distribution on subsets of [n], where each S ⊆ [n] is sampled with probability f ˆ (S) 2 . The Fourier Entropy-influence (FEI) conjecture of Friedgut and Kalai [28] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C > 0 such that H(f ˆ2 ) ≤ C ⋅ Inf (f), where H (fˆ2) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f In this article, we present three new contributions toward the FEI conjecture: (1) Our first contribution shows that H(f ˆ2 ) ≤ 2 ⋅ aUC ⊕ (f), where aUC ⊕ (f) is the average unambiguous parity-certificate complexity of f . This improves upon several bounds shown by Chakraborty et al. [20]. We further improve this bound for unambiguous DNFs. We also discuss how our work makes Mansour's conjecture for DNFs a natural next step toward resolution of the FEI conjecture. (2) We next consider the weaker Fourier Min-entropy-influence (FMEI) conjecture posed by O'Donnell and others [50, 53], which asks if H ∞ fˆ2) ≤ C ⋅ Inf(f), where H ∞ fˆ2) is the min-entropy of the Fourier distribution. We show H ∞ (fˆ2) ≤ 2⋅C min ⊕ (f), where C min ⊕ (f) is the minimum parity-certificate complexity of f . We also show that for all ε≥0, we have H ∞ (fˆ2) ≤2 log⁡(∥f ˆ ∥1,ε/(1−ε)), where ∥f ˆ ∥1,ε is the approximate spectral norm of f . As a corollary, we verify the FMEI conjecture for the class of read- k DNFs (for constant  k ). (3) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2 ω(d) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI, and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.


2021 ◽  
Vol 104 (4) ◽  
pp. 49-55
Author(s):  
S. Bitimkhan ◽  

In the theory of one-dimensional trigonometric series, the Hardy-Littlewood theorem on Fourier series with monotone Fourier coefficients is of great importance. Multidimensional versions of this theorem have been extensively studied for the Lebesgue space. Significant differences of the multidimensional variants in comparison with the one-dimensional case are revealed and the strengthening of this theorem is obtained. The Hardy-Littlewood theorem is also generalized for various function spaces and various types of monotonicity of the series coefficients. Some of these generalizations can be seen in works of M.F. Timan, M.I. Dyachenko, E.D. Nursultanov, S. Tikhonov. In this paper, a generalization of the Hardy-Littlewood theorem for double Fourier series of a function in the space L_qϕ(L_q)(0,2π]^2 is obtained.


2021 ◽  
Vol 56 (2) ◽  
pp. 193-207
Author(s):  
V. F. Babenko ◽  
N. V. Parfinovych ◽  
D. S. Skorokhodov

In this paper we solve two problems of optimal recovery based on information given with an error. First is the problem of optimal recovery of the class $W^T_q = \{(t_1h_1,t_2h_2,\ldots)\,\colon \,\|h\|_{\ell_q}\le 1\}$, where $1\le q < \infty$ and $t_1\ge t_2\ge \ldots \ge 0$ are given, in the space $\ell_q$. Information available about a sequence $x\in W^T_q$ is provided either (i) by an element $y\in\mathbb{R}^n$, $n\in\mathbb{N}$, whose distance to the first $n$ coordinates $\left(x_1,\ldots,x_n\right)$ of $x$ in the space $\ell_r^n$, $0 < r \le \infty$, does not exceed given $\varepsilon\ge 0$, or (ii) by a sequence $y\in\ell_\infty$ whose distance to $x$ in the space $\ell_r$ does not exceed $\varepsilon$. We show that the optimal method of recovery in this problem is either operator $\Phi^*_m$ with some $m\in\mathbb{Z}_+$ ($m\le n$ in case $y\in\ell^n_r$), where \smallskip\centerline{$\displaystyle \Phi^*_m(y) = \Big\{y_1\left(1 - \frac{t_{m+1}^q}{t_{1}^q}\Big),\ldots,y_m\Big(1 - \frac{t_{m+1}^q}{t_{m}^q}\Big),0,\ldots\right\},\quad y\in\mathbb{R}^n\text{ or } y\in\ell_\infty,$} \smallskip\noior convex combination $(1-\lambda) \Phi^*_{m+1} + \lambda\Phi^*_{m}$. The second one is the problem of optimal recovery of the scalar product operator acting on the Cartesian product $W^{T,S}_{p,q}$ of classes $W^T_p$ and $W^S_q$, where $1 < p,q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ and $s_1\ge s_2\ge \ldots \ge 0$ are given. Information available about elements $x\in W^T_p$ and $y\in W^S_q$ is provided by elements $z,w\in \mathbb{R}^n$ such that the distance between vectors $\left(x_1y_1, x_2y_2,\ldots,x_ny_n\right)$ and $\left(z_1w_1,\ldots,z_nw_n\right)$ in the space $\ell_r^n$ does not exceed $\varepsilon$. We show that the optimal method of recovery is delivered either by operator $\Psi^*_m$ with some $m\in\{0,1,\ldots,n\}$, where \smallskip\centerline{$\displaystyle \Psi^*_m = \sum_{k=1}^m z_kw_k\Big(1 - \frac{t_{m+1}s_{m+1}}{t_ks_k}\Big),\quad z,w\in\mathbb{R}^n,$} \smallskip\noior by convex combination $(1-\lambda)\Psi^*_{m+1} + \lambda\Psi^*_{m}$. As an application of our results we consider the problem of optimal recovery of classes in Hilbert spaces by the Fourier coefficients of its elements known with an error measured in the space $\ell_p$ with $p > 2$.


Author(s):  
Taylor Garnowski

AbstractWe compute asymptotic estimates for the Fourier coefficients of two mock theta functions, which come from Bailey pairs derived by Lovejoy and Osburn. To do so, we employ the circle method due to Wright and a modified Tauberian theorem. We encounter cancelation in our estimates for one of the mock theta functions due to the auxiliary function $$\theta _{n,p}$$ θ n , p arising from the splitting of Hickerson and Mortenson. We deal with this by using higher-order asymptotic expansions for the Jacobi theta functions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kieran Child

AbstractWe derive an explicit formula for the trace of an arbitrary Hecke operator on spaces of twist-minimal holomorphic cusp forms with arbitrary level and character, and weight at least 2. We show that this formula provides an efficient way of computing Fourier coefficients of basis elements for newform or cusp form spaces. This work was motivated by the development of a twist-minimal trace formula in the non-holomorphic case by Booker, Lee and Strömbergsson, as well as the presentation of a fully generalised trace formula for the holomorphic case by Cohen and Strömberg.


2021 ◽  
Vol 15 (9) ◽  
pp. 2381-2401
Author(s):  
Steffen Löbrich ◽  
Markus Schwagenscheidt

Sign in / Sign up

Export Citation Format

Share Document