Some comments on inverse arithmetic functions

2004 ◽  
Vol 89 (516) ◽  
pp. 403-408
Author(s):  
P. G. Brown

In many of the basic courses in Number Theory, Finite Mathematics and Cryptography we come across the so-called arithmetic functions such as ϕn), σ(n), τ(n), μ(n), etc, whose domain is the set of natural numbers. These functions are well known and evaluated through the prime factor decomposition of n. It is less well known that these functions possess inverses (with respect to Dirichlet multiplication) which have interesting properties and applications.

2013 ◽  
Vol 88 (3) ◽  
pp. 460-472 ◽  
Author(s):  
PAUL POLLACK ◽  
CARLO SANNA

AbstractTwo arithmetic functions $f$ and $g$ form a Möbius pair if $f(n)= {\mathop{\sum }\nolimits}_{d\mid n} g(d)$ for all natural numbers $n$. In that case, $g$ can be expressed in terms of $f$ by the familiar Möbius inversion formula of elementary number theory. In a previous paper, the first-named author showed that if the members $f$ and $g$ of a Möbius pair are both finitely supported, then both functions vanish identically. Here we prove two significantly stronger versions of this uncertainty principle. A corollary is that in a nonzero Möbius pair, one cannot have both ${\mathop{\sum }\nolimits}_{f(n)\not = 0} 1/ n\lt \infty $ and ${\mathop{\sum }\nolimits}_{g(n)\not = 0} 1/ n\lt \infty $.


1992 ◽  
Vol 57 (3) ◽  
pp. 1108-1119 ◽  
Author(s):  
Gerhard Jäger ◽  
Barbara Primo

AbstractThis paper presents several proof-theoretic results concerning weak fixed point theories over second order number theory with arithmetic comprehension and full or restricted induction on the natural numbers. It is also shown that there are natural second order theories which are proof-theoretically equivalent but have different proof-theoretic ordinals.


2013 ◽  
Vol 56 (1) ◽  
pp. 35-45
Author(s):  
Milan Paštéka ◽  
Zuzana Václavíková

ABSTRACT In this paper we study the conditions (1), (2) and (3) for the permutations which preserve the weighted density. These conditions are motivated by the conditions of Lévy group, originated in [Levy, P.: Problèmes concrets d’Analyse Fonctionelle. Gauthier Villars, Paris, 1951], and studied in [Obata, N.: Density of natural numbers and Lévy group, J. Number Theory 30 (1988), 288-297]. In the second part we prove that under some conditions for the sequence of weights, for instance for the logarithmic density, the first two conditions can be launched


1952 ◽  
Vol 17 (3) ◽  
pp. 192-197 ◽  
Author(s):  
John Myhill

Martin has shown that the notions of ancestral and class-inclusion are sufficient to develop the theory of natural numbers in a system containing variables of only one type.The purpose of the present paper is to show that an analogous construction is possible in a system containing, beyond the quantificational level, only the ancestral and the ordered pair.The formulae of our system comprise quantificational schemata and anything which can be obtained therefrom by writing pairs (e.g. (x; y), ((x; y); (x; (y; y))) etc.) for free variables, or by writing ancestral abstracts (e.g. (*xyFxy) etc.) for schematic letters, or both.The ancestral abstract (*xyFxy) means what is usually meant by ; and the formula (*xyFxy)zw answers to Martin's (zw; xy)(Fxy).The system presupposes a non-simple applied functional calculus of the first order, with a rule of substitution for predicate letters; over and above this it has three axioms for the ancestral and two for the ordered pair.


1953 ◽  
Vol 18 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Hao Wang

It is known that we can introduce in number theory (for example, the system Z of Hilbert-Bernays) by induction schemata certain predicates of natural numbers which cannot be expressed explicitly within the framework of number theory. The question arises how we can define these predicates in some richer system, without employing induction schemata. In this paper a general notion of definability by induction (relative to number theory), which seems to apply to all the known predicates of this kind, is introduced; and it is proved that in a system L1 which forms an extension of number theory all predicates which are definable by induction (hereafter to be abbreviated d.i.) according to the definition are explicitly expressible.In order to define such predicates and prove theorems answering to their induction schemata, we have to allow certain impredicative classes in L1. However, if we want merely to prove that for each constant number the special case of the induction schema for a predicate d.i. is provable, we do not have to assume the existence of impredicative classes. A certain weaker system L2, in which only predicative classes of natural numbers are allowed, is sufficient for the purpose. It is noted that a truth definition for number theory can be obtained in L2. Consistency proofs for number theory do not seem to be formalizable in L2, although they can, it is observed, be formalized in L1.In general, given any ordinary formal system (say Zermelo set theory), it is possible to define by induction schemata, in the same manner as in number theory, certain predicates which are not explicitly definable in the system. Here again, by extending the system in an analogous fashion, these predicates become expressible in the resulting system. The crucial predicate instrumental to obtaining a truth definition for a given system is taken as an example.


1973 ◽  
Vol 38 (2) ◽  
pp. 232-248 ◽  
Author(s):  
Philip T. Shepard

In this paper I shall argue that the presumption of infinitude may be excised from the area of mathematics known as natural number theory with no substantial loss. Except for a few concluding remarks, I shall restrict my concern in here arguing the thesis to the business of constructing and developing a first-order axiomatic system for arithmetic (called ‘FA’ for finite arithmetic) that contains no theorem to the effect that there are infinitely many numbers.The paper will consist of five parts. Part I characterizes the underlying logic of FA. In part II ordering of natural numbers is developed from a restricted set of axioms, induction schemata are proved and a way of expressing finitude presented. A full set of axioms are used in part III to prove working theorems on comparison of size. In part IV an ordinal expression is defined and characteristic theorems proved. Theorems for addition and multiplication are derived in part V from definitions in terms of the ordinal expression of part IV. The crucial final constructions of part V present a new method of replacing recursive characterizations by strict definitions.In view of our resolution not to assume that there are infinitely many numbers, we shall have to deal with the situation where singular arithmetic terms of FA may fail to refer. For I know of no acceptable and systematic way of avoiding such situations. As a further result, singular-term instances of universal generalizations of FA are not to be inferred directly from the generalizations themselves. Nevertheless, (i) (x)(y)(x + y = y + x), for example, and all its instances are provable in FA.


Author(s):  
B.Mahaboob, Et. al.

The generalization of sum of integral powers of first n-natural numbers has been an interesting problem among the researchers in Analytical Number Theory for decades. This research article mainly focuses on the derivation of generalized result of this sum. More explicit formula has been derived in order to get the sum of any arbitrary integral powers of first n-natural numbers. Furthermore by using the fundamental principles of Combinatorics and Linear Algebra an attempt has been made to answer an interesting question namely: Is the sum of integral powers of natural numbers a unique polynomial? As a result it is depicted that this sum always equals a unique polynomial over natural numbers. Moreover some properties of the coefficients of this polynomial are derived.More importantly a recurrence relation which can give the formulas for sum of any positive integral powers of first n-natural numbers has been proposed and it is strongly believed that this recurrence relation is the most significant thing in this entire discussion


Author(s):  
Zurab Agdgomelashvili ◽  

The article considers the following issues: – It’s of great interest for p and q primes to determine the number of those prime number divisors of a number 1 1 pq A p    that are less than p. With this purpose we have considered: Theorem 1. Let’s p and q are odd prime numbers and p  2q 1. Then from various individual divisors of the 1 1 pq A p    number, only one of them is less than p. A has at least two different simple divisors; Theorem 2. Let’s p and q are odd prime numbers and p  2q 1. Then all prime divisors of the number 1 1 pq A p    are greater than p; Theorem 3. Let’s q is an odd prime number, and p N \{1}, p]1;q] [q  2; 2q] , then each of the different prime divisors of the number 1 1 pq A p    taken separately is greater than p; Theorem 4. Let’s q is an odd prime number, and p{q1; 2q1}, then from different prime divisors of the number 1 1 pq A p    taken separately, only one of them is less than p. A has at least two different simple divisors. Task 1. Solve the equation 1 2 1 z x y y    in the natural numbers x , y, z. In addition, y must be a prime number. Task 2. Solve the equation 1 3 1 z x y y    in the natural numbers x , y, z. In addition, y must be a prime number. Task 3. Solve the equation 1 1 z x y p y    where p{6; 7; 11; 13;} are the prime numbers, x, y  N and y is a prime number. There is a lema with which the problem class can be easily solved: Lemma ●. Let’s a, b, nN and (a,b) 1. Let’s prove that if an  0 (mod| ab|) , or bn  0 (mod| ab|) , then | ab|1. Let’s solve the equations ( – ) in natural x , y numbers: I. 2 z x y z z x y          ; VI. (x  y)xy  x y ; II. (x  y)z  (2x)z  yz ; VII. (x  y)xy  yx ; III. (x  y)z  (3x)z  yz ; VIII. (x  y) y  (x  y)x , (x  y) ; IV. ( y  x)x y  x y , (y  x) ; IX. (x  y)x y  xxy ; V. ( y  x)x y  yx , (y  x) ; X. (x  y)xy  (x  y)x , (y  x) . Theorem . If a, bN (a,b) 1, then each of the divisors (a2  ab  b2 ) will be similar. The concept of pseudofibonacci numbers is introduced and some of their properties are found.


2008 ◽  
Vol 58 (3) ◽  
Author(s):  
M. Garaev ◽  
M. Kühleitner ◽  
F. Luca ◽  
W. Nowak

AbstractThis is an extended summary of a talk given by the last named author at the Czecho-Slovake Number Theory Conference 2005, held at Malenovice in September 2005. It surveys some recent results concerning asymptotics for a class of arithmetic functions, including, e.g., the second moments of the number-of-divisors function d(n) and of the function r(n) which counts the number of ways to write a positive integer as a sum of two squares. For the proofs, reference is made to original articles by the authors published elsewhere.


Sign in / Sign up

Export Citation Format

Share Document