Transit-Time Volume Flow Measurements in Autogenous Femorodistal Bypass Surgery for Intraoperative Quality Control

Vascular ◽  
2010 ◽  
Vol 18 (6) ◽  
pp. 344-349 ◽  
Author(s):  
J. Bosma ◽  
R. C. Minnee ◽  
D. Erdogan ◽  
W. Wisselink ◽  
A. C. Vahl
2017 ◽  
Vol 10 (2) ◽  
pp. 156-161 ◽  
Author(s):  
Sophia F Shakur ◽  
Denise Brunozzi ◽  
Ahmed E Hussein ◽  
Andreas Linninger ◽  
Chih-Yang Hsu ◽  
...  

BackgroundThe hemodynamic evaluation of cerebral arteriovenous malformations (AVMs) using DSA has not been validated against true flow measurements.ObjectiveTo validate AVM hemodynamics assessed by DSA using quantitative magnetic resonance angiography (QMRA).Materials and methodsPatients seen at our institution between 2007 and 2016 with a supratentorial AVM and DSA and QMRA obtained before any treatment were retrospectively reviewed. DSA assessment of AVM flow comprised AVM arterial-to-venous time (A-Vt) and iFlow transit time. A-Vt was defined as the difference between peak contrast intensity in the cavernous internal carotid artery and peak contrast intensity in the draining vein. iFlow transit times were determined using syngo iFlow software. A-Vt and iFlow transit times were correlated with total AVM flow measured using QMRA and AVM angioarchitectural and clinical features.Results33 patients (mean age 33 years) were included. Nine patients presented with hemorrhage. Mean AVM volume was 9.8 mL (range 0.3–57.7 mL). Both A-Vt (r=−0.47, p=0.01) and iFlow (r=−0.44, p=0.01) correlated significantly with total AVM flow. iFlow transit time was significantly shorter in patients who presented with seizure but A-Vt and iFlow did not vary with other AVM angioarchitectural features such as venous stenosis or hemorrhagic presentation.ConclusionsA-Vt and iFlow transit times on DSA correlate with cerebral AVM flow measured using QMRA. Thus, these parameters may be used to indirectly estimate AVM flow before and after embolization during angiography in real time.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Charudatta S. Bavare ◽  
Jean Bismuth ◽  
Hosam F. El-Sayed ◽  
Tam T. Huynh ◽  
Eric K. Peden ◽  
...  

1975 ◽  
pp. 293-298
Author(s):  
Arnošt Kotyk ◽  
Karel Janáček

1995 ◽  
pp. 503-507 ◽  
Author(s):  
L. N. Bohs ◽  
B. H. Friemel ◽  
B. A. McDermott ◽  
G. E. Trahey

1996 ◽  
Vol 81 (2) ◽  
pp. 895-904 ◽  
Author(s):  
M. F. Humer ◽  
P. T. Phang ◽  
B. P. Friesen ◽  
M. F. Allard ◽  
C. M. Goddard ◽  
...  

We tested the hypothesis that endotoxin increases the heterogeneity of gut capillary transit times and impairs oxygen extraction. The gut critical oxygen extraction ratio was determined by measuring multiple oxygen delivery-consumption points during progressive phlebotomy in eight control and eight endotoxin-infused anesthetized pigs. In multiple 1- to 2-g samples of small bowel, we measured blood volume (radiolabeled red blood cells) and flow (radiolabeled 15-microns microspheres) before and after critical oxygen extraction. Red blood cell transit time (= volume/flow) multiplied by morphologically determined capillary/total blood volume gave capillary transit time. During hemorrhage, capillary/total blood volume did not change in the endotoxin group (0.5 +/- 4.5%) but increased in the control group (17.6 +/- 2.5%; P < 0.05) due to a decrease in total gut blood volume. Flow decreased significantly in the endotoxin group (36 +/- 10%; P < 0.05) but not in the control group (12 +/- 10%). Capillary transit-time heterogeneity increased in the endotoxin group (12.3 +/- 4.9%) compared with the control group (-5.8 +/- 7.4%; P < 0.05), predicting a critical oxygen extraction ratio 0.14 lower in the endotoxin group than in the control group (K. R. Walley. J. Appl. Physiol. 81: 885–894, 1996). This matches the measured difference (endotoxin group, 0.60 +/- 0.04; control group, 0.74 +/- 0.03; P < 0.05). Increased heterogeneity of capillary transit times may be an important cause of impaired oxygen extraction.


Sign in / Sign up

Export Citation Format

Share Document