A learning resource recommendation method combining user sequential interaction with collaborative filtering

Author(s):  
Wenjuan Niu ◽  
Zhendong Niu ◽  
Shiping Tang ◽  
Zhi Huang ◽  
Wei Wang ◽  
...  
Author(s):  
Xuebin Wang ◽  
Zhengzhou Zhu ◽  
Jiaqi Yu ◽  
Ruofei Zhu ◽  
DeQi Li ◽  
...  

The accuracy of learning resource recommendation is crucial to realizing precise teaching and personalized learning. We propose a novel collaborative filtering recommendation algorithm based on the student’s online learning sequential behavior to improve the accuracy of learning resources recommendation. First, we extract the student’s learning events from his/her online learning process. Then each student’s learning events are selected as the basic analysis unit to extract the feature sequential behavior sequence that represents the student’s learning behavioral characteristics. Then the extracted feature sequential behavior sequence generates the student’s feature vector. Moreover, we improve the H-[Formula: see text] clustering algorithm that clusters the students who have similar learning behavior. Finally, we recommend learning resources to the students combine similarity user clusters with the traditional collaborative filtering algorithm based on user. The experiment shows that the proposed algorithm improved the accuracy rate by 110% and recall rate by 40% compared with the traditional user-based collaborative filtering algorithm.


2018 ◽  
Vol 16 (2) ◽  
pp. 62-69
Author(s):  
A. A. Knyazeva ◽  
◽  
O. S. Kolobov ◽  
I. Yu. Turchanovsky ◽  
A. M. Fedotov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document