scholarly journals Strong shape theory of continuous maps

2021 ◽  
pp. 63-98
Author(s):  
V. Baladze ◽  
A. Beridze ◽  
R. Tsinaridze
Keyword(s):  
2020 ◽  
Vol 4 (1) ◽  
pp. 29-39
Author(s):  
Dilrabo Eshkobilova ◽  

Uniform properties of the functor Iof idempotent probability measures with compact support are studied. It is proved that this functor can be lifted to the category Unif of uniform spaces and uniformly continuous maps


2020 ◽  
Vol 9 (11) ◽  
pp. 9353-9360
Author(s):  
G. Selvi ◽  
I. Rajasekaran

This paper deals with the concepts of semi generalized closed sets in strong generalized topological spaces such as $sg^{\star \star}_\mu$-closed set, $sg^{\star \star}_\mu$-open set, $g^{\star \star}_\mu$-closed set, $g^{\star \star}_\mu$-open set and studied some of its basic properties included with $sg^{\star \star}_\mu$-continuous maps, $sg^{\star \star}_\mu$-irresolute maps and $T_\frac{1}{2}$-space in strong generalized topological spaces.


2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph Malkoun ◽  
Peter J. Olver

Abstract Given n distinct points $\mathbf {x}_1, \ldots , \mathbf {x}_n$ in $\mathbb {R}^d$ , let K denote their convex hull, which we assume to be d-dimensional, and $B = \partial K $ its $(d-1)$ -dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps $\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$ which, for $\varepsilon> 0$ , are defined on the $(d-1)$ -dimensional sphere, and whose images $\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$ are codimension $1$ submanifolds contained in the interior of K. Moreover, as the parameter $\varepsilon $ goes to $0^+$ , the images $\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$ converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.


2019 ◽  
Vol 7 (1) ◽  
pp. 29-37
Author(s):  
Jose S. Cánovas

AbstractIn this paper we review and explore the notion of topological entropy for continuous maps defined on non compact topological spaces which need not be metrizable. We survey the different notions, analyze their relationship and study their properties. Some questions remain open along the paper.


1990 ◽  
Vol 107 (3) ◽  
pp. 493-499 ◽  
Author(s):  
José M. R. Sanjurjo

AbstractSome results are presented which establish connections between shape theory and the theory of multivalued maps. It is shown how to associate an upper-semi-continuous multivalued map F: X → Y to every approximative map f = {fk, X → Y} in the sense of K. Borsuk and it is proved that, in certain circumstances, if F is ‘small’ and admits a selection, then the shape morphism S(f) is generated by a map, and if F admits a coselection then S(f) is a shape domination.


2003 ◽  
Vol 9 (3-4) ◽  
pp. 381-392 ◽  
Author(s):  
L.S. Efremova ◽  
E.N. Makhrova
Keyword(s):  

Author(s):  
B. J. Day ◽  
G. M. Kelly

We are concerned with the category of topological spaces and continuous maps. A surjection f: X → Y in this category is called a quotient map if G is open in Y whenever f−1G is open in X. Our purpose is to answer the following three questions:Question 1. For which continuous surjections f: X → Y is every pullback of f a quotient map?Question 2. For which continuous surjections f: X → Y is f × lz: X × Z → Y × Z a quotient map for every topological space Z? (These include all those f answering to Question 1, since f × lz is the pullback of f by the projection map Y ×Z → Y.)Question 3. For which topological spaces Z is f × 1Z: X × Z → Y × Z a qiptoent map for every quotient map f?


Sign in / Sign up

Export Citation Format

Share Document