scholarly journals Approximation of Bounded Continuous Functions by Linear Combinations of Phillips Operators

2014 ◽  
Vol 47 (3) ◽  
Author(s):  
Gancho Tachev

AbstractWe study the approximation properties of linear combinations of the so-called Phillips operators, which can be considered as genuine Szász-Mirakjan-Durrmeyer operators. As main result, we prove a direct estimate for the rate of approximation of bounded continuous functions f E C[0,x), measured in C|\[0,x)-norm and thus generalizing the results, proved earlier by Gupta, Agrawal, and Gairola in [3]. Our estimates rely on the recent results, obtained in the joint works of M. Heilmann and the author-[10, 11]

Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1517-1530 ◽  
Author(s):  
M. Mursaleen ◽  
Shagufta Rahman ◽  
Khursheed Ansari

In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.


1979 ◽  
Vol 31 (4) ◽  
pp. 890-896 ◽  
Author(s):  
Seki A. Choo

In this paper, X denotes a completely regular Hausdorff space, Cb(X) all real-valued bounded continuous functions on X, E a Hausforff locally convex space over reals R, Cb(X, E) all bounded continuous functions from X into E, Cb(X) ⴲ E the tensor product of Cb(X) and E. For locally convex spaces E and F, E ⴲ, F denotes the tensor product with the topology of uniform convergence on sets of the form S X T where S and T are equicontinuous subsets of E′, F′ the topological duals of E, F respectively ([11], p. 96). For a locally convex space G , G ′ will denote its topological dual.


1980 ◽  
Vol 32 (4) ◽  
pp. 867-879
Author(s):  
Ronnie Levy

If X is a dense subspace of Y, much is known about the question of when every bounded continuous real-valued function on X extends to a continuous function on Y. Indeed, this is one of the central topics of [5]. In this paper we are interested in the opposite question: When are there continuous bounded real-valued functions on X which extend to no point of Y – X? (Of course, we cannot hope that every function on X fails to extend since the restrictions to X of continuous functions on Y extend to Y.) In this paper, we show that if Y is a compact metric space and if X is a dense subset of Y, then X admits a bounded continuous function which extends to no point of Y – X if and only if X is completely metrizable. We also show that for certain spaces Y and dense subsets X, the set of bounded functions on X which extend to a point of Y – X form a first category subset of C*(X).


1991 ◽  
Vol 3 (4) ◽  
pp. 617-622 ◽  
Author(s):  
Věra Kůrková

We show that Kolmogorov's theorem on representations of continuous functions of n-variables by sums and superpositions of continuous functions of one variable is relevant in the context of neural networks. We give a version of this theorem with all of the one-variable functions approximated arbitrarily well by linear combinations of compositions of affine functions with some given sigmoidal function. We derive an upper estimate of the number of hidden units.


Sign in / Sign up

Export Citation Format

Share Document