scholarly journals Deep-Water Waves: on the Nonlinear Schrödinger Equation and its Solutions

Author(s):  
Nikolay K. Vitanov ◽  
Amin Chabchoub ◽  
Norbert Hoffmann

The ordinary nonlinear Schrödinger equation for deep water waves, found by perturbation analysis to O (∊ 3 ) in the wave-steepness ∊ ═ ka , is shown to compare rather unfavourably with the exact calculations of Longuet-Higgins (1978 b ) for ∊ > 0.15, say. We show that a significant improvement can be achieved by taking the perturbation analysis one step further O (∊ 4 ). The dominant new effect introduced to order ∊ 4 is the mean flow response to non-uniformities in the radiation stress caused by modulation of a finite amplitude wave.


2018 ◽  
Vol 48 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Nikolay K. Vitanov ◽  
Zlatinka I. Dimitrova

AbstractWe consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.


2014 ◽  
Vol 92 (10) ◽  
pp. 1158-1165
Author(s):  
H.I. Abdel-Gawad

It has been shown that progression of waves in deep water is described by the nonlinear Schrödinger equation with time-dependent diffraction and nonlinearity coefficients. Investigation of the solutions is done here in the two cases when the coefficients are proportional or otherwise. In the first case, it is shown that the water waves are traveling at time-dependent speed and are periodic waves, which are coupled to solitons or elliptic waves seen in the noninertial frames. In the inertial frames wave modulation instability is visualized. In the second case, and when the diffraction coefficient dominates the nonlinearity, water waves collapse with unbounded amplitude at finite time. Exact solutions are found here by using the extended unified method together, while presenting a new algorithm for treating nonlinear coupled partial differential equations.


1977 ◽  
Vol 83 (1) ◽  
pp. 49-74 ◽  
Author(s):  
Bruce M. Lake ◽  
Henry C. Yuen ◽  
Harald Rungaldier ◽  
Warren E. Ferguson

Results of an experimental investigation of the evolution of a nonlinear wave train on deep water are reported. The initial stage of evolution is found to be characterized by exponential growth of a modulational instability, as was first discovered by Benjamin ' Feir. At later stages of evolution it is found that the instability does not lead to wave-train disintegration or loss of coherence. Instead, the modulation periodically increases and decreases, and the wave train exhibits the Fermi–Pasta–Ulam recurrence phenomenon. Results of an earlier study of nonlinear wave packets by Yuen ' Lake, in which solutions of the nonlinear Schrödinger equation were shown to provide quantitatively correct descriptions of the properties of nonlinear wave packets, are applied to describe the experimentally observed wave-train phenomena. A comparison between the laboratory data and numerical solutions of the nonlinear Schrödinger equation for the long-time evolution of nonlinear wave trains is given.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 121
Author(s):  
Leo Dostal

The influence of a strong and gusty wind field on ocean waves is investigated. How the random wind affects solitary waves is analyzed in order to obtain insights about wave generation by randomly time varying wind forcing. Using the Euler equations of fluid dynamics and the method of multiple scales, a random nonlinear Schrödinger equation and a random modified nonlinear Schrödinger equation are obtained for randomly wind forced nonlinear deep water waves. Miles theory is used for modeling the pressure variation at the wave surface resulting from the wind velocity field. The nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation are computed using a relaxation pseudo spectral scheme. The results show that the influence of gusty wind on solitary waves leads to a randomly increasing ocean wave envelope. However, in a laboratory setup with much smaller wave amplitudes and higher wave frequencies, the influence of water viscosity is much higher. This leads to fluctuating solutions, which are sensitive to wind forcing.


2019 ◽  
Vol 5 (4) ◽  
pp. 413-417 ◽  
Author(s):  
Roger Grimshaw

Abstract It is widely known that deep-water waves are modulationally unstable and that this can be modelled by a nonlinear Schrödinger equation. In this paper, we extend the previous studies of the effect of wind forcing on this instability to water waves in finite depth and in two horizontal space dimensions. The principal finding is that the instability is enhanced and becomes super-exponential and that the domain of instability in the modulation wavenumber space is enlarged. Since the outcome of modulation instability is expected to be the generation of rogue waves, represented within the framework of the nonlinear Schrödinger equation as a Peregrine breather, we also examine the effect of wind forcing on a Peregrine breather. We find that the breather amplitude will grow at twice the rate of a linear instability.


Sign in / Sign up

Export Citation Format

Share Document