modulation instability
Recently Published Documents


TOTAL DOCUMENTS

993
(FIVE YEARS 203)

H-INDEX

53
(FIVE YEARS 9)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Florent Bessin ◽  
Corentin Naveau ◽  
Matteo Conforti ◽  
Alexandre Kudlinski ◽  
Pascal Szriftgiser ◽  
...  

AbstractModulation instability is one of the most ubiquitous phenomena in physics. Here we investigate the phase-sensitive properties of modulation instability with harmonic seeding in passive fiber resonators. Theoretical investigations based on the Lugiato−Lefever equation with time dependent pump and a three-wave truncation show that the dynamics of the system is sensitive to the relative phase between input signal, idler, and pump waves. The modulation instability gain can even vanish for a peculiar value of the initial relative phase. An advanced multi-heterodyne measurement technique had been developed to record the real time evolution, round-trip to round-trip, of the power and phase of the output cavity field to confirm these theoretical predictions.


2022 ◽  
Author(s):  
Thilagarajah Mathanaranjan

Abstract In this study, the generalized coupled nonlinear Schrodinger-KdV (NLS-KdV) system is investigated to obtain new optical soliton solutions. This system appears as a model for reciprocity between long and short waves in various of physical settings. Different kind of new soliton solutions including dark, bright, combined dark-bright, singular and combined singular soliton solutions are obtained using two effective methods namely, the extended sinh-Gordon equation expansion method and the solitary wave ansatz method. In addition, the modulation instability analysis of the system is presented based on the standard linearstability analysis. The behaviours of obtained solutions are expressed by 3D graphs.


Author(s):  
Li Yan ◽  
Ajay Kumar ◽  
Juan Luis García Guirao ◽  
Haci Mehmet Baskonus ◽  
Wei Gao

In this paper, the rational sine–cosine and rational sinh–cosh methods are applied in extracting some properties of nonlinear Phi-four and Gross–Pitaevskii equations. The singular periodic wave solutions, dark soliton solutions and hyperbolic function solutions are reported. The solitary waves are observed from the traveling waves under the values of the parameters. Modulation instability analysis is also observed in various simulations. We also plot to observe the wave distributions of parameters of stability in 2D and 3D visuals via package program.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 458
Author(s):  
Susam Boral ◽  
Trilochan Sahoo ◽  
Yury Stepanyants

An interesting physical phenomenon was recently observed when a fresh-water basin is covered by a thin ice film that has properties similar to the property of a rubber membrane. Surface waves can be generated under the action of wind on the air–water interface that contains an ice film. The modulation property of hydro-elastic waves (HEWs) in deep water covered by thin ice film blown by the wind with a uniform vertical profile is studied here in terms of the airflow velocity versus wavenumber. The modulation instability of HEWs is studied through the analysis of coefficients of the nonlinear Schrödinger (NLS) equation with the help of the Lighthill criterion. The NLS equation is derived using the multiple scale method in the presence of airflow. It is demonstrated that the potentially unstable hydro-elastic waves with negative energy appear for relatively small wind speeds, whereas the Kelvin–Helmholtz instability arises when the wind speed becomes fairly strong. Estimates of parameters of modulated waves for the typical conditions are given.


2021 ◽  
Vol 153 ◽  
pp. 111523
Author(s):  
Kaltham K. Al-Kalbani ◽  
K.S. Al-Ghafri ◽  
E.V. Krishnan ◽  
Anjan Biswas

2021 ◽  
Author(s):  
Dmitry A Korobko ◽  
Igor O. Zolotovskii ◽  
Sergey Moiseev ◽  
Alexei S. Kadochkin ◽  
Vyacheslav Svetukhin

Abstract Propagation of high-intensity electromagnetic waves in a waveguide structure could initiate nonlinear effects resulting in drastic changes of their spatial and temporal characteristics. We study the modulation instability effect induced by propagation of surface plasmon polaritons in a silver thin-film waveguide. The nonlinear Schrodinger equation for propagating surface plasmon wave is obtained. It is shown numerically that the modulation instability effect can give rise to ultrafast spatial redistribution and longitudinal localization of surface plasmon-polariton wave energy in subwavelength scale. The dependence of plasmon wave dispersion and nonlinear characteristics on metal film thickness is considered. We demonstrate that the use of films with the thickness varying along the waveguide length allows reduction of the generated pulse width and increase of frequency comb bandwidth. The proposed technique is promising for design of ultra-compact (tens of nm) optical generators delivering pulse trains with the repetition rate higher than 1THz.


Sign in / Sign up

Export Citation Format

Share Document