wind waves
Recently Published Documents


TOTAL DOCUMENTS

1305
(FIVE YEARS 311)

H-INDEX

54
(FIVE YEARS 5)

2022 ◽  
Vol 10 (1) ◽  
pp. 46
Author(s):  
Malek Abid ◽  
Christian Kharif ◽  
Hung-Chu Hsu ◽  
Yang-Yih Chen

The theory of surface wave generation, in viscous flows, is modified by replacing the linear-logarithmic shear velocity profile, in the air, with a model which links smoothly the linear and logarithmic layers through the buffer layer. This profile includes the effects of air flow turbulence using a damped mixing-length model. In the water, an exponential shear velocity profile is used. It is shown that this modified and coupled shear-velocity profile gives a better agreement with experimental data than the coupled linear-logarithmic, non smooth profile, (in the air)–exponential profile (in the water), widely used in the literature. We also give new insights on retrograde modes that are Doppler shifted by the surface velocity at the air-sea interface, namely on the threshold value of the surface current for the occurrence of a second unstable mode.


2022 ◽  
Vol 924 (2) ◽  
pp. 58
Author(s):  
K. Sasikumar Raja ◽  
Milan Maksimovic ◽  
Eduard P. Kontar ◽  
Xavier Bonnin ◽  
Philippe Zarka ◽  
...  

Abstract We present the statistical analysis of the spectral response of solar radio type III bursts over the wide frequency range between 20 kHz and 410 MHz. For this purpose, we have used observations that were carried out using both spaced-based (Wind/Waves) and ground-based (Nançay Decameter Array and Nançay Radioheliograph) facilities. In order to compare the flux densities observed by the different instruments, we have carefully calibrated the data and displayed them in solar flux units. The main result of our study is that type III bursts, in the metric to hectometric wavelength range, statistically exhibit a clear maximum of their median radio flux density around 2 MHz. Although this result was already reported by inspecting the spectral profiles of type III bursts in the frequency range 20 kHz–20 MHz, our study extends such analysis for the first time to metric radio frequencies (i.e., from 20 kHz to 410 MHz) and confirms the maximum spectral response around 2 MHz. In addition, using a simple empirical model we show that the median radio flux S of the studied data set obeys the polynomial form Y = 0.04X 3 − 1.63X 2 + 16.30X − 41.24, with X = ln ( F MHz ) and with Y = ln ( S SFU ) . Using the Sittler and Guhathakurtha model for coronal streamers, we have found that the maximum of radio power therefore falls in the range 4 to 10 R ⊙, depending on whether the type III emissions are assumed to be at the fundamental or the harmonic.


Ocean Science ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1815-1829
Author(s):  
Jan-Victor Björkqvist ◽  
Siim Pärt ◽  
Victor Alari ◽  
Sander Rikka ◽  
Elisa Lindgren ◽  
...  

Abstract. The classic characterisation of swell as regular, almost monochromatic, wave trains does not necessarily accurately describe swell in water bodies shielded from the oceanic wave climate. In such enclosed areas the locally generated swell waves still contribute to processes at the air and seabed interfaces, and their presence can be quantified by partitioning wave components based on their speed relative to the wind. We present swell statistics for the semi-enclosed Baltic Sea using 20 years of swell-partitioned model data. The swell significant wave height was mostly under 2 m, and in the winter (DJF) the mean significant swell height was typically less than 0.4 m; higher swell was found in limited nearshore areas. Swell waves were typically short (under 5 s), with mean periods over 8 s being rare. In open-sea areas the average ratio of swell energy (to total energy) was mostly below 0.4 – significantly less than in the World Ocean. Certain coastal areas were swell dominated over half the time, mostly because of weak winds (U<5 m s−1) rather than high swell heights. Swell-dominated events with a swell height over 1 m typically lasted under 10 h. A cross-correlation analysis indicates that swell in the open sea is mostly generated from local wind sea when wind decays (dominant time lag roughly 15 h). Near the coast, however, the results suggest that the swell is partially detached from the local wind waves, although not necessarily from the weather system that generates them because the highest swell typically arrives with a roughly 10 h delay after the low-pressure system has already passed.


2021 ◽  
Author(s):  
Natalia Tilinina ◽  
Dmitry Ivonin ◽  
Alexander Gavrikov ◽  
Vitaly Sharmar ◽  
Sergey Gulev ◽  
...  

Abstract. The global coverage of the observational network of the wind waves is still characterized by the significant gaps in in situ observations. At the same time wind waves play an important role into the Earth’ climate system specifically in the air-sea interaction processes and energy exchange between the ocean and the atmosphere. In this paper we present the SeaVision system for measuring wind waves’ parameters in the open ocean with navigational marine X-band radar and prime data collection from the three research cruises in the North Atlantic (2020 and 2021) and Arctic (2021). Simultaneously with SeaVision observations of the wind waves we were collecting data in the same locations and time with Spotter wave buoy and running WaveWatch III model over our domains. Measurements with SeaVision were quality controlled and validated by comparison with Spotter buoy data and WaveWatch III experiments. Observations of the wind waves with navigational Xband radar are in agreement among these three sources of data, with the best agreement for wave propagation directions. The dataset that supports this paper consists of significant wave height, wave period and wave energy frequency spectrum from both SeaVision and Spotter buoy. Currently the dataset is available through the temporary link (https://sail.ocean.ru/tilinina2021/) while supporting dataset (Tilinina et al., 2021) is in technical processing at PANGAEA repository. The dataset can be used for validation of satellite missions as well as model outputs. One of the major highlights in this study is potential of all ships navigating into the open ocean and equipped with X-band marine radar to participate into the development of another observational network for the wind waves in the open ocean once cheap and independently operating version of the SeaVision (or any other system) is available.


2021 ◽  
Vol 12 (23) ◽  
pp. 33-48
Author(s):  
Goran Lončar ◽  
◽  
Filip Kalinić ◽  
Dalibor Carević ◽  
Damjan Bujak ◽  
...  

The morphodynamics of an artificial gravel beach in the Bay of Rijeka (Ploče Beach) was analyzed. The morphological changes of the beach face were monitored through an intense situation of gravitational surface wind waves from the incident SSW direction. A numerical modeling technique was applied, after initially establishing a numerical model for wave deformation. A model for sediment transport was established based on its results. Both models were based on the finite volume method. In addition, the partial contribution of the longshore component of sediment transport was analyzed based on empirical formulae. The modeling results were verified by comparing the positions and amounts of eroded/accumulated material along the beach with the processing of terrain images in the form of point clouds. The erosion and accumulation positions of the beach sediment material, obtained by numerical model simulations, corresponded to the surveyed positions. The total volume of eroded and accumulated material based on terrain image processing corresponded to the model values.


MAUSAM ◽  
2021 ◽  
Vol 48 (2) ◽  
pp. 323-328
Author(s):  
P.S. MUKHOPADHYAY ◽  
G. K. MANDAL ◽  
G. K. SEN ◽  
D. K. SINHA

ABSTRACT. In this paper we have tried to set up a mathematical model that will show the contribution of wind-induced surface waves of the ocean, on surges in shallow basin of Bay of Bengal. For this, the energy balance equation, excluding non-linear forcing term, is considered and solved by Lax-Wendroff integration scheme. Wind is specified over all the grid points following Cardone' s formulation. The hydrodynamic equations in linearised form as used by Jelesnianski have been considered and using Shuman's algorithm, those equations have been solved. In the process of solving these equations, the output of the energy balance equation is included as wave set up term to incorporate energy contribution of wind waves to surges. The estimated surge height is compared with and without considering wave contribution.      


2021 ◽  
Author(s):  
Lukas WinklerPrins ◽  
John Largier ◽  
Ana Vila-Concejo ◽  
Shari Gallop ◽  
Thomas Fellowes ◽  
...  

The wave field in coastal bays is comprised of waves generated by far-off storms and waves generated locally by winds inside the bay and regionally outside the bay. The resultant wave field varies spatially and temporally and is expected to control morphologic features, such as beaches in estuaries and bays (BEBs). However, neither the wave field nor the role of waves in shaping BEBs have been well-studied, limiting the efficacy of coastal protection and restoration projects. Here we present observations of the wave field in Tomales Bay, a 20 km long, narrow, semi-enclosed embayment on the wave-dominated coast of Northern California (USA) with a tidal range of 2.5 m. We deployed pressure sensors in front of several beaches along the linear axis of the bay. Low-frequency waves (4 * 10^-2 * 2.5 * 10*^-1 Hz or 4 - 25 s period) dissipated within 4 km of the mouth, delineating the "outer bay" region, where remotely-generated swell and regionally-generated wind waves can dominate. The "inner bay" spectrum, further landward, is dominated by fetch-limited waves generated within the bay with frequency >= 2.5 < 10*-1 Hz. The energy of both ocean waves and locally-generated wind waves across all sites were modulated by the tide, owing to tidal changes in water depth and currents. Wave energies were typically low at low tide and high at high tide. Thus, in addition to fluctuations in winds and the presence of ocean waves, tides exert a strong control on the wave energy spectra at BEBs in mesotidal regions. In general, it is expected that events that can reshape beaches occur during high wind or swell events that occur at high-tide, when waves can reach the beaches with less attenuation. However, no such events were observed during our study and questions remain as to how rarely such wind-tide concurrences occur across the bay.


2021 ◽  
Vol 7 ◽  
Author(s):  
Reza Marsooli ◽  
Mohammad Jamous ◽  
Jon K. Miller

Coastal areas of State of New Jersey in the Northeastern United States are exposed to extreme wind waves generated by tropical cyclones in the Atlantic Ocean. Past studies suggest that the frequency and intensity of major hurricanes in the Atlantic basin would increase under high greenhouse gas emission scenarios. Furthermore, sea level observations have revealed that the local mean sea level along the coast of New Jersey is rising at a rate higher than that of the global sea level rise. The objective of this study is to quantify the combined influence of sea level rise (SLR) and hurricane climatology change on wave heights induced by major hurricanes off the coast of New Jersey. To this end, a coupled hydrodynamic-wave model is utilized to simulate wind waves for synthetic hurricanes generated for the climate conditions in the historical period of 1980–2000 and future period of 2080–2100 under the RCP8.5 high emission scenario. The synthetic storms are generated by a hurricane model for the climate conditions obtained from four different global climate models. The projections of future wave heights show statistically significant increases in the wave heights induced by major hurricanes. Under the combined effects of hurricane climatology change and a SLR of 1.19 m, the increase in the extreme wave heights 15% in back-bays and shallow waters of the nearshore zone and up to 10% in deeper coastal waters. It is found that SLR alone would result in a significant increase in the hurricane-induced wave heights in the present-day surf zone.


2021 ◽  
Vol 242 ◽  
pp. 110179
Author(s):  
Almog Shani-Zerbib ◽  
Mehmet Aziz Tayfun ◽  
Dan Liberzon

2021 ◽  
Vol 922 (2) ◽  
pp. 203
Author(s):  
Alexander M. Hegedus ◽  
Ward B. Manchester ◽  
Justin C. Kasper

Abstract The most intense solar energetic particle events are produced by coronal mass ejections (CMEs) accompanied by intense type II radio bursts below 15 MHz. Understanding where these type II bursts are generated relative to an erupting CME would reveal important details of particle acceleration near the Sun, but the emission cannot be imaged on Earth due to distortion from its ionosphere. Here, a technique is introduced to identify the likely source location of the emission by comparing the dynamic spectrum observed from a single spacecraft against synthetic spectra made from hypothesized emitting regions within a magnetohydrodynamic (MHD) numerical simulation of the recreated CME. The radio-loud 2005 May 13 CME was chosen as a test case, with Wind/WAVES radio data being used to frame the inverse problem of finding the most likely progression of burst locations. An MHD recreation is used to create synthetic spectra for various hypothesized burst locations. A framework is developed to score these synthetic spectra by their similarity to the type II frequency profile derived from the Wind/WAVES data. Simulated areas with 4× enhanced entropy and elevated de Hoffmann–Teller velocities are found to produce synthetic spectra similar to spacecraft observations. A geometrical analysis suggests the eastern edge of the entropy-derived shock around (−30°, 0°) was emitting in the first hour of the event before falling off, and the western/southwestern edge of the shock centered around (6°, −12°) was a dominant area of radio emission for the 2 hr of simulation data out to 20 solar radii.


Sign in / Sign up

Export Citation Format

Share Document