Intervals of effect algebras and pseudo-effect algebras

2010 ◽  
Vol 60 (5) ◽  
Author(s):  
Ivan Chajda ◽  
Jan Kühr

AbstractIt is shown that an arbitrary interval of a pseudo-effect algebra is a pseudo-effect algebra and some results concerning Riesz decomposition properties, compatibilities and states are proved.

2007 ◽  
Vol 82 (2) ◽  
pp. 183-207 ◽  
Author(s):  
Anatolij Dvurečenskij

AbstractWe introduce perfect effect algebras and we show that every perfect algebra is an interval in the lexicographical product of the group of all integers with an Abelian directed interpolation po-group. To show this we introduce prime ideals of effect algebras with the Riesz decomposition property (RDP). We show that the category of perfect effect algebras is categorically equivalent to the category of Abelian directed interpolation po-groups. Moreover, we prove that any perfect effect algebra is a subdirect product of antilattice effect algebras with the RDP.


2001 ◽  
Vol 64 (1) ◽  
pp. 81-98 ◽  
Author(s):  
Gejza Jenča

Effect algebras, introduced by Foulis and Bennett in 1994, are partial algebras which generalise some well known classes of algebraic structures (for example orthomodular lattices, MV algebras, orthoalgebras et cetera). In the present paper, we introduce a new class of effect algebras, calledhomogeneous effect algebras. This class includes orthoalgebras, lattice ordered effect algebras and effect algebras satisfying the Riesz decomposition property. We prove that every homogeneous effect algebra is a union of its blocks, which we define as maximal sub-effect algebras satisfying the Riesz decomposition property. This generalizes a recent result by Riec˘anová, in which lattice ordered effect algebras were considered. Moreover, the notion of a block of a homogeneous effect algebra is a generalisation of the notion of a block of an orthoalgebra. We prove that the set of all sharp elements in a homogeneous effect algebraEforms an orthoalgebraEs. Every block ofEsis the centre of a block ofE. The set of all sharp elements in the compatibility centre ofEcoincides with the centre ofE. Finally, we present some examples of homogeneous effect algebras and we prove that for a Hilbert space ℍ with dim (ℍ) > 1, the standard effect algebra ℰ(ℍ) of all effects in ℰ is not homogeneous.


Author(s):  
Simin Saidi Goraghani ◽  
Rajab Ali Borzooei

 In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some interesting topologies on effect modules.


2021 ◽  
Vol 71 (3) ◽  
pp. 523-534
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract Effect algebras form a formal algebraic description of the structure of the so-called effects in a Hilbert space which serve as an event-state space for effects in quantum mechanics. This is why effect algebras are considered as logics of quantum mechanics, more precisely as an algebraic semantics of these logics. Because every productive logic is equipped with implication, we introduce here such a concept and demonstrate its properties. In particular, we show that this implication is connected with conjunction via a certain “unsharp” residuation which is formulated on the basis of a strict unsharp residuated poset. Though this structure is rather complicated, it can be converted back into an effect algebra and hence it is sound. Further, we study the Modus Ponens rule for this implication by means of so-called deductive systems and finally we study the contraposition law.


2020 ◽  
Vol 379 (3) ◽  
pp. 1077-1112 ◽  
Author(s):  
György Pál Gehér ◽  
Peter Šemrl

Abstract The Hilbert space effect algebra is a fundamental mathematical structure which is used to describe unsharp quantum measurements in Ludwig’s formulation of quantum mechanics. Each effect represents a quantum (fuzzy) event. The relation of coexistence plays an important role in this theory, as it expresses when two quantum events can be measured together by applying a suitable apparatus. This paper’s first goal is to answer a very natural question about this relation, namely, when two effects are coexistent with exactly the same effects? The other main aim is to describe all automorphisms of the effect algebra with respect to the relation of coexistence. In particular, we will see that they can differ quite a lot from usual standard automorphisms, which appear for instance in Ludwig’s theorem. As a byproduct of our methods we also strengthen a theorem of Molnár.


2012 ◽  
Vol 62 (3) ◽  
Author(s):  
Ivan Chajda ◽  
Miroslav Kolařík

AbstractWe introduce the so-called tense operators in lattice effect algebras. Tense operators express the quantifiers “it is always going to be the case that” and “it has always been the case that” and hence enable us to express the dimension of time in the logic of quantum mechanics. We present an axiomatization of these tense operators and prove that every lattice effect algebra whose underlying lattice is complete can be equipped with tense operators. Such an effect algebra is called dynamic since it reflects changes of quantum events from past to future.


Sign in / Sign up

Export Citation Format

Share Document