symmetry transformations
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 37)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
A. Tripathi ◽  
B. Chauhan ◽  
A. K. Rao ◽  
R. P. Malik

We carry out the Becchi-Rouet-Stora-Tyutin (BRST) quantization of the one 0 + 1 -dimensional (1D) model of a free massive spinning relativistic particle (i.e., a supersymmetric system) by exploiting its classical infinitesimal and continuous reparameterization symmetry transformations. We use the modified Bonora-Tonin (BT) supervariable approach (MBTSA) to BRST formalism to obtain the nilpotent (anti-)BRST symmetry transformations of the target space variables and the (anti-)BRST invariant Curci-Ferrari- (CF-) type restriction for the 1D model of our supersymmetric (SUSY) system. The nilpotent (anti-)BRST symmetry transformations for other variables of our model are derived by using the (anti-)chiral supervariable approach (ACSA) to BRST formalism. Within the framework of the latter, we have shown the existence of the CF-type restriction by proving the (i) symmetry invariance of the coupled Lagrangians and (ii) the absolute anticommutativity property of the conserved (anti-)BRST charges. The application of the MBTSA to a physical SUSY system (i.e., a 1D model of a massive spinning particle) is a novel result in our present endeavor. In the application of ACSA, we have considered only the (anti-)chiral super expansions of the supervariables. Hence, the observation of the absolute anticommutativity of the (anti-)BRST charges is a novel result. The CF-type restriction is universal in nature as it turns out to be the same for the SUSY and non-SUSY reparameterization (i.e., 1D diffeomorphism) invariant models of the (non-)relativistic particles.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jim Talbert ◽  
Michael Trott

Abstract We report a set of exact formulae for computing Dirac masses, mixings, and CP-violation parameter(s) from 3×3 Yukawa matrices Y valid when YY† → U†YY†U under global $$ \mathrm{U}{(3)}_{Q_L} $$ U 3 Q L flavour symmetry transformations U. The results apply to the Standard Model Effective Field Theory (SMEFT) and its ‘geometric’ realization (geoSMEFT). We thereby complete, in the Dirac flavour sector, the catalogue of geoSMEFT parameters derived at all orders in the $$ \sqrt{2\left\langle {H}^{\dagger }H\right\rangle } $$ 2 H † H /Λ expansion. The formalism is basis-independent, and can be applied to models with decoupled ultraviolet flavour dynamics, as well as to models whose infrared dynamics are not minimally flavour violating. We highlight these points with explicit examples and, as a further demonstration of the formalism’s utility, we derive expressions for the renormalization group flow of quark masses, mixings, and CP-violation at all mass dimension and perturbative loop orders in the (geo)SM(EFT) and beyond.


2021 ◽  
Vol 5 (11) ◽  
pp. 119401
Author(s):  
Martin Charron ◽  
Ayrton Zadra

Abstract An extension is proposed to the internal symmetry transformations associated with mass, entropy and other Clebsch-related conservation in geophysical fluid dynamics. Those symmetry transformations were previously parameterized with an arbitrary function  of materially conserved Clebsch potentials. The extension consists in adding potential vorticity q to the list of fields on which a new arbitrary function  depends. If  = q  ( s ) , where  ( s ) is an arbitrary function of specific entropy s, then the symmetry is trivial and gives rise to a trivial conservation law. Otherwise, the symmetry is non-trivial and an associated non-trivial conservation law exists. Moreover, the notions of trivial and non-trivial Casimir invariants are defined. All non-trivial symmetries that become hidden following a reduction of phase space are associated with non-trivial Casimir invariants of a non-canonical Hamiltonian formulation for fluids, while all trivial conservation laws are associated with trivial Casimir invariants.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
B. Chauhan ◽  
S. Kumar

We derive the off-shell nilpotent of order two and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST, and (anti-)co-BRST symmetry transformations for the Christ–Lee (CL) model in one 0 + 1 -dimension (1D) of spacetime by exploiting the (anti-)chiral supervariable approach (ACSA) to BRST formalism where the quantum symmetry (i.e., (anti-)BRST along with (anti-)co-BRST) invariant quantities play a crucial role. We prove the nilpotency and absolute anticommutativity properties of the (anti-)BRST along with (anti-)co-BRST conserved charges within the scope of ACSA to BRST formalism where we take only one Grassmannian variable into account. We also show the (anti-)BRST and (anti-)co-BRST invariances of the Lagrangian within the scope of ACSA.


Author(s):  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

We discuss the nilpotent Becchi–Rouet–Stora–Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations and derive their corresponding conserved charges in the case of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) self-interacting non-Abelian gauge theory (without any interaction with matter fields). We point out a set of novel features that emerge out in the BRST and co-BRST analysis of the above 2D gauge theory. The algebraic structures of the symmetry operators (and corresponding conserved charges) and their relationship with the cohomological operators of differential geometry are established too. To be more precise, we demonstrate the existence of a single Lagrangian density that respects the continuous symmetries which obey proper algebraic structure of the cohomological operators of differential geometry. In the literature, such observations have been made for the coupled (but equivalent) Lagrangian densities of the 4D non-Abelian gauge theory. We lay emphasis on the existence and properties of the Curci–Ferrari (CF)-type restrictions in the context of (anti-)BRST and (anti-)co-BRST symmetry transformations and pinpoint their key differences and similarities. All the observations, connected with the (anti-)co-BRST symmetries, are completely novel.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
A. K. Rao ◽  
A. Tripathi ◽  
R. P. Malik

We exploit the theoretical strength of the supervariable and Becchi-Rouet-Stora-Tyutin (BRST) formalisms to derive the proper (i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry transformations for the reparameterization invariant model of a nonrelativistic (NR) free particle whose space x and time t variables are a function of an evolution parameter τ . The infinitesimal reparameterization (i.e., 1D diffeomorphism) symmetry transformation of our theory is defined w.r.t. this evolution parameter τ . We apply the modified Bonora-Tonin (BT) supervariable approach (MBTSA) as well as the (anti)chiral supervariable approach (ACSA) to BRST formalism to discuss various aspects of our present system. For this purpose, our 1D ordinary theory (parameterized by τ ) is generalized onto a 1 , 2 -dimensional supermanifold which is characterized by the superspace coordinates Z M = τ , θ , θ ¯ where a pair of the Grassmannian variables satisfy the fermionic relationships: θ 2 = θ ¯ 2 = 0 , θ   θ ¯ + θ ¯   θ = 0 , and τ is the bosonic evolution parameter. In the context of ACSA, we take into account only the 1 , 1 -dimensional (anti)chiral super submanifolds of the general 1 , 2 -dimensional supermanifold. The derivation of the universal Curci-Ferrari- (CF-) type restriction, from various underlying theoretical methods, is a novel observation in our present endeavor. Furthermore, we note that the form of the gauge-fixing and Faddeev-Popov ghost terms for our NR and non-SUSY system is exactly the same as that of the reparameterization invariant SUSY (i.e., spinning) and non-SUSY (i.e., scalar) relativistic particles. This is a novel observation, too.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


Author(s):  
Faig Pashaev ◽  
Arzuman Gasanov ◽  
Musaver Musaev ◽  
Ibrahim Abbasov

Abstract It is known that the application of the group theory greatly simplifies the problems of polyatomic systems possessing to any space symmetry. The symmetry properties of such systems are their most important characteristics. In such systems, the Hamilton operator is invariant under unitary symmetry transformations and rearrangements of identical particles in the coordinate system. This allows to obtain information about the character of one-electron wave functions — molecular orbitals — the considered system, i.e. to symmetrise the original wave functions without solving the Schrödinger equation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yarong Xia ◽  
Ruoxia Yao ◽  
Xiangpeng Xin

Under investigation in this paper is the higher-order Broer-Kaup(HBK) system, which describes the bidirectional propagation of long waves in shallow water. Via the standard truncated Painlevé expansion method, the residual symmetry of this system is derived. By introducing an appropriate auxiliary-dependent variable, the residual symmetry is successfully localized to Lie point symmetries. Via solving the initial value problems, the finite symmetry transformations are presented. However, the solution which obtained from the residual symmetry is a special group invariant solutions. In order to find more general solution of HBK system, we further generalize the residual symmetry method to the consistent tanh expansion (CTE) method and prove that the HBK system is CTE solvable, then the resonant soliton solutions and interaction solutions among different nonlinear excitations are obtained by the CET method.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Khudija Bibi ◽  
Khalil Ahmad

In this article, symmetry technique is utilized to obtain new exact solutions of the Cattaneo equation. The infinitesimal symmetries, linear combinations of these symmetries, and corresponding similarity variables are determined, which lead to many exact solutions of the considered equation. By applying similarity transformations, the mentioned partial differential equation is reduced to some ordinary differential equations of second order. Solutions of these ordinary differential equations have yielded many exact solutions of the Cattaneo equation.


Sign in / Sign up

Export Citation Format

Share Document