Weak relatively uniform convergences on MV-algebras

2013 ◽  
Vol 63 (1) ◽  
Author(s):  
Štefan Černák ◽  
Ján Jakubík

AbstractWeak relatively uniform convergences (wru-convergences, for short) in lattice ordered groups have been investigated in previous authors’ papers. In the present article, the analogous notion for MV-algebras is studied. The system s(A) of all wru-convergences on an MV-algebra A is considered; this system is partially ordered in a natural way. Assuming that the MV-algebra A is divisible, we prove that s(A) is a Brouwerian lattice and that there exists an isomorphism of s(A) into the system s(G) of all wru-convergences on the lattice ordered group G corresponding to the MV-algebra A. Under the assumption that the MV-algebra A is archimedean and divisible, we investigate atoms and dual atoms in the system s(A).

2011 ◽  
Vol 61 (5) ◽  
Author(s):  
Štefan Černák ◽  
Ján Jakubík

AbstractThe notion of relatively uniform convergence has been applied in the theory of vector lattices and in the theory of archimedean lattice ordered groups. Let G be an abelian lattice ordered group. In the present paper we introduce the notion of weak relatively uniform convergence (wru-convergence, for short) on G generated by a system M of regulators. If G is archimedean and M = G +, then this type of convergence coincides with the relative uniform convergence on G. The relation of wru-convergence to the o-convergence is examined. If G has the diagonal property, then the system of all convex ℓ-subgroups of G closed with respect to wru-limits is a complete Brouwerian lattice. The Cauchy completeness with respect to wru-convergence is dealt with. Further, there is established that the system of all wru-convergences on an abelian divisible lattice ordered group G is a complete Brouwerian lattice.


2008 ◽  
Vol 58 (3) ◽  
Author(s):  
Ján Jakubík

AbstractIn a previous author’s paper, sequential convergences on an MV-algebra have been studied; the Urysohn’s axiom was assumed to be valid. The system of all such convergences was denoted by Conv . In the present paper we investigate analogous questions without supposing the validity of the Urysohn’s axiom; the corresponding system of convergences is denoted by conv . Both Conv and conv are partially ordered by the set-theoretical inclusion. We deal with the properties of conv 289-6 and the relations between conv and Conv . We prove that each interval of conv is a distributive lattice. The system conv has the least element, but it does not possess any atom. Hence it is either a singleton set or it is infinite. We consider also the relations between conv and conv G, where (G, u) is a unital lattice-ordered group with = Γ (G, u).


1973 ◽  
Vol 14 (2) ◽  
pp. 145-160 ◽  
Author(s):  
N. R. Reilly

A tight Riesz group is a partially ordered group which satisfies a strengthened form of the Riesz interpolation property. The term “tight” was introduced by Miller in [8], and the tight interpolation property has been considered in papers by Fuchs [3], Miller [8, 9], Loy and Miller [7] and Wirth [12]. If the closure of the cone P, in the interval topology, of such a partially ordered group G contains no pseudozeros, then is itself the cone of a partial order on G. Loy and Miller found of particular interest the case in which this associated partial orderis a lattice order. This situation was then considered in reverse by A. Wirth [12] who investigated under what circumstances a lattice ordered group would permit the existence of a tight Riesz order (called a compatible tight Riesz order) for which the initial lattice order is the order defined by the closure of the cone of the tight Riesz order.Wirth gave two fundamental anduseful characterizations of those subsets of the cone of a lattice ordered group that canbe the strict cone of a compatible tight Riesz order; one is in terms of archimedean classes and the other is an elementwise characterization. Although Loy, Miller and Wirth restricted their attention to abelian groups, much of what they do carries over verbatim to nonabelian groups. In the main result of this paper (Theorem 2.6) a description of the strict cone of a compatible tight Riesz order on a lattice ordered group Gis given in terms of the prime subgroups of G.This is particularly useful when one is attempting to identify the compatible tight Riesz orders on some particular lattice ordered group or class of lattice ordered groups, since it narrows down to a convenient family of subsets the possible candidates for strict cones of compatible tight Riesz orders. These can then be tested under Wirth's criteria. This technique is illustrated in § 5, where the compatible tight Riesz orders are determined o a lattice ordered group of the type V(Γ, Gγ), where Γ is of finite width, and in § 6, where two examples are considered.


2008 ◽  
Vol 58 (2) ◽  
Author(s):  
Ján Jakubík

AbstractFor an MV-algebra let J 0() be the system of all closed ideals of ; this system is partially ordered by the set-theoretical inclusion. A radical class X of MV-algebras will be called a K-radical class iff, whenever ∈ X and is an MV-algebra with J 0() ≅ J 0(), then ∈ X. An analogous notation for lattice ordered groups was introduced and studied by Conrad. In the present paper we show that there is a one-to-one correspondence between K-radical classes of MV-algebras and K-radical classes of abelian lattice ordered groups. We also prove an analogous result for product radical classes of MV-algebras; product radical classes of lattice ordered groups were studied by Ton.


1971 ◽  
Vol 5 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Roger D. Bleier

We show that each archimedean lattice-ordered group is contained in a unique (up to isomorphism) minimal archimedean vector lattice. This improves a result of Paul F. Conrad appearing previously in this Bulletin. Moreover, we show that this relationship between archimedean lattice-ordered groups and archimedean vector lattices is functorial.


1969 ◽  
Vol 21 ◽  
pp. 1004-1012 ◽  
Author(s):  
Richard D. Byrd

Conrad (10) and Wolfenstein (15; 16) have introduced the notion of an archimedean extension (a-extension) of a lattice-ordered group (l-group). In this note the class of l-groups that possess a plenary subset of regular subgroups which are normal in the convex l-subgroups that cover them are studied. It is shown in § 3 (Corollary 3.4) that the class is closed with respect to a-extensions and (Corollary 3.7) that each member of the class has an a-closure. This extends (6, p. 324, Corollary II; 10, Theorems 3.2 and 4.2; 15, Theorem 1) and gives a partial answer to (10, p. 159, Question 1). The key to proving both of these results is Theorem 3.3, which asserts that if a regular subgroup is normal in the convex l-subgroup that covers it, then this property is preserved by a-extensions.


1972 ◽  
Vol 13 (2) ◽  
pp. 224-240 ◽  
Author(s):  
R. J. Loy ◽  
J. B. Miller

The theory of partially ordered topological groups has received little attention in the literature, despite the accessibility and importance in analysis of the group Rm. One obstacle in the way of a general theory seems to be, that a convenient association between the ordering and the topology suggests that the cone of all strictly positive elements be open, i.e. that the topology be at least as strong as the open-interval topology U; but if the ordering is a lattice ordering and not a full ordering then U itself is already discrete. So to obtain in this context something more interesting topologically than the discrete topology and orderwise than the full order, one must forego orderings which make lattice-ordered groups: in fact, the partially ordered group must be an antilattice, that is, must admit no nontrivial meets or joins (see § 2, 10°).


2009 ◽  
Vol 59 (2) ◽  
Author(s):  
Štefan Černák ◽  
Judita Lihová

AbstractThe notion of a relatively uniform convergence (ru-convergence) has been used first in vector lattices and then in Archimedean lattice ordered groups.Let G be an Archimedean lattice ordered group. In the present paper, a relative uniform completion (ru-completion) $$ G_{\omega _1 } $$ of G is dealt with. It is known that $$ G_{\omega _1 } $$ exists and it is uniquely determined up to isomorphisms over G. The ru-completion of a finite direct product and of a completely subdirect product are established. We examine also whether certain properties of G remain valid in $$ G_{\omega _1 } $$. Finally, we are interested in the existence of a greatest convex l-subgroup of G, which is complete with respect to ru-convergence.


2012 ◽  
Vol 62 (3) ◽  
Author(s):  
Ján Jakubík

AbstractTorsion classes and radical classes of lattice ordered groups have been investigated in several papers. The notions of torsion class and of radical class of generalized Boolean algebras are defined analogously. We denote by T g and R g the collections of all torsion classes or of all radical classes of generalized Boolean algebras, respectively. Both T g and R g are partially ordered by the class-theoretical inclusion. We deal with the relation between these partially ordered collection; as a consequence, we obtain that T g is a Brouwerian lattice. W. C. Holland proved that each variety of lattice ordered groups is a torsion class. We show that an analogous result is valid for generalized Boolean algebras.


2008 ◽  
Vol 58 (6) ◽  
Author(s):  
Ján Jakubík

AbstractIn this paper we investigate sequential convergences on a cyclically ordered group G which are compatible with the group operation and with the relation of cyclic order; we do not assume the validity of the Urysohn’s axiom. The system convG of convergences under consideration is partially ordered by means of the set-theoretical inclusion. We prove that convG is a Brouwerian lattice.


Sign in / Sign up

Export Citation Format

Share Document