scholarly journals Compatible tight Riesz orders and prime subgroups

1973 ◽  
Vol 14 (2) ◽  
pp. 145-160 ◽  
Author(s):  
N. R. Reilly

A tight Riesz group is a partially ordered group which satisfies a strengthened form of the Riesz interpolation property. The term “tight” was introduced by Miller in [8], and the tight interpolation property has been considered in papers by Fuchs [3], Miller [8, 9], Loy and Miller [7] and Wirth [12]. If the closure of the cone P, in the interval topology, of such a partially ordered group G contains no pseudozeros, then is itself the cone of a partial order on G. Loy and Miller found of particular interest the case in which this associated partial orderis a lattice order. This situation was then considered in reverse by A. Wirth [12] who investigated under what circumstances a lattice ordered group would permit the existence of a tight Riesz order (called a compatible tight Riesz order) for which the initial lattice order is the order defined by the closure of the cone of the tight Riesz order.Wirth gave two fundamental anduseful characterizations of those subsets of the cone of a lattice ordered group that canbe the strict cone of a compatible tight Riesz order; one is in terms of archimedean classes and the other is an elementwise characterization. Although Loy, Miller and Wirth restricted their attention to abelian groups, much of what they do carries over verbatim to nonabelian groups. In the main result of this paper (Theorem 2.6) a description of the strict cone of a compatible tight Riesz order on a lattice ordered group Gis given in terms of the prime subgroups of G.This is particularly useful when one is attempting to identify the compatible tight Riesz orders on some particular lattice ordered group or class of lattice ordered groups, since it narrows down to a convenient family of subsets the possible candidates for strict cones of compatible tight Riesz orders. These can then be tested under Wirth's criteria. This technique is illustrated in § 5, where the compatible tight Riesz orders are determined o a lattice ordered group of the type V(Γ, Gγ), where Γ is of finite width, and in § 6, where two examples are considered.

1975 ◽  
Vol 20 (3) ◽  
pp. 307-322 ◽  
Author(s):  
N. R. Reilly

A tight Riesz group G is a partially ordered group G that satisfies a strengthened form of the Riesz interpolation property. The term “tight” was introduced by Miller in (1970) and the tight interpolation property has been considered by Fuchs (1965), Miller (1973), (to appear), (preprint), Loy and Miller (1972) and Wirth (1973). If G is free of elements called pseudozeros then G is a non-discrete Hausdorff topological group with respect to the open interval topology U. Moreover the closure P of the cone P of the given order is the cone of an associated order on G. This allows an interesting interplay between the associated order, the tight Riesz order and the topology U. Loy and Miller found of particular interest the case in which the associated partial order is a lattice order. This situation was considered in reverse by Reilly (1973) and Wirth (1973), who investigated the circumstances under which a lattice ordered group, and indeed a partially ordered group, permits the existence of a tight Riesz order for which the initial order is the associated order. These tight Riesz orders were then called compatible tight Riesz orders. In Section one we relate these ideas to the topologies denned on partially ordered groups by means of topological identities, as described by Banaschewski (1957), and show that the topologies obtained from topological identities are precisely the open interval topologies from compatible tight Riesz orders.


2013 ◽  
Vol 63 (1) ◽  
Author(s):  
Štefan Černák ◽  
Ján Jakubík

AbstractWeak relatively uniform convergences (wru-convergences, for short) in lattice ordered groups have been investigated in previous authors’ papers. In the present article, the analogous notion for MV-algebras is studied. The system s(A) of all wru-convergences on an MV-algebra A is considered; this system is partially ordered in a natural way. Assuming that the MV-algebra A is divisible, we prove that s(A) is a Brouwerian lattice and that there exists an isomorphism of s(A) into the system s(G) of all wru-convergences on the lattice ordered group G corresponding to the MV-algebra A. Under the assumption that the MV-algebra A is archimedean and divisible, we investigate atoms and dual atoms in the system s(A).


2013 ◽  
Vol 63 (5) ◽  
Author(s):  
Anthony Hager ◽  
Chawne Kimber ◽  
Warren McGovern

AbstractA ring with identity is said to be clean if every element can be written as a sum of a unit and an idempotent. The study of clean rings has been at the forefront of ring theory over the past decade. The theory of partially-ordered groups has a nice and long history and since there are several ways of relating a ring to a (unital) partially-ordered group it became apparent that there ought to be a notion of a clean partially-ordered group. In this article we define a clean unital lattice-ordered group; we state and prove a theorem which characterizes clean unital ℓ-groups. We mention the relationship of clean unital ℓ-groups to algebraic K-theory. In the last section of the article we generalize the notion of clean to the non-unital context and investigate this concept within the framework of W-objects, that is, archimedean ℓ-groups with distinguished weak order unit.


1971 ◽  
Vol 5 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Roger D. Bleier

We show that each archimedean lattice-ordered group is contained in a unique (up to isomorphism) minimal archimedean vector lattice. This improves a result of Paul F. Conrad appearing previously in this Bulletin. Moreover, we show that this relationship between archimedean lattice-ordered groups and archimedean vector lattices is functorial.


1973 ◽  
Vol 18 (3) ◽  
pp. 239-246
Author(s):  
Andrew Wirth

AbstractRelative uniform limits need not be unique in a non-archimedean partially ordered group, and order convergence need not imply metric convergence in a Banach lattice. We define a new type of convergence on partially ordered groups (R-convergence), which implies both the previous ones, and does not have these defects. Further R-convergence is equivalent to relative uniform convergence on divisible directed integrally closed partially ordered groups, and to order convergence on fully ordered groups.


1969 ◽  
Vol 21 ◽  
pp. 1004-1012 ◽  
Author(s):  
Richard D. Byrd

Conrad (10) and Wolfenstein (15; 16) have introduced the notion of an archimedean extension (a-extension) of a lattice-ordered group (l-group). In this note the class of l-groups that possess a plenary subset of regular subgroups which are normal in the convex l-subgroups that cover them are studied. It is shown in § 3 (Corollary 3.4) that the class is closed with respect to a-extensions and (Corollary 3.7) that each member of the class has an a-closure. This extends (6, p. 324, Corollary II; 10, Theorems 3.2 and 4.2; 15, Theorem 1) and gives a partial answer to (10, p. 159, Question 1). The key to proving both of these results is Theorem 3.3, which asserts that if a regular subgroup is normal in the convex l-subgroup that covers it, then this property is preserved by a-extensions.


1972 ◽  
Vol 13 (2) ◽  
pp. 224-240 ◽  
Author(s):  
R. J. Loy ◽  
J. B. Miller

The theory of partially ordered topological groups has received little attention in the literature, despite the accessibility and importance in analysis of the group Rm. One obstacle in the way of a general theory seems to be, that a convenient association between the ordering and the topology suggests that the cone of all strictly positive elements be open, i.e. that the topology be at least as strong as the open-interval topology U; but if the ordering is a lattice ordering and not a full ordering then U itself is already discrete. So to obtain in this context something more interesting topologically than the discrete topology and orderwise than the full order, one must forego orderings which make lattice-ordered groups: in fact, the partially ordered group must be an antilattice, that is, must admit no nontrivial meets or joins (see § 2, 10°).


2009 ◽  
Vol 59 (2) ◽  
Author(s):  
Štefan Černák ◽  
Judita Lihová

AbstractThe notion of a relatively uniform convergence (ru-convergence) has been used first in vector lattices and then in Archimedean lattice ordered groups.Let G be an Archimedean lattice ordered group. In the present paper, a relative uniform completion (ru-completion) $$ G_{\omega _1 } $$ of G is dealt with. It is known that $$ G_{\omega _1 } $$ exists and it is uniquely determined up to isomorphisms over G. The ru-completion of a finite direct product and of a completely subdirect product are established. We examine also whether certain properties of G remain valid in $$ G_{\omega _1 } $$. Finally, we are interested in the existence of a greatest convex l-subgroup of G, which is complete with respect to ru-convergence.


1959 ◽  
Vol 55 (2) ◽  
pp. 165-171 ◽  
Author(s):  
D. C. J. Burgess

1. Introduction. The present paper is chiefly concerned with a generalization, to be known as a ‘D-interval’, of the notion of interval or segment in an arbitrary partially ordered group. This idea is originally due to Duthie (2), but was developed by him only in a lattice. In analogy with the use of the interval in the normal sense, notions of ‘D-distributivity’ and ‘D-modularity’ are defined in terms of the D-interval, and analogues of known properties of lattice-groups or ‘l– groups’ can be formulated which might be valid when a lattice structure is no longer assumed to exist; in particular, an attempt is made to provide such a generalization of the result of Freudenthal (3) that every Z-group is a distributive lattice, but, for an arbitrary partially ordered group, it is shown that only an ‘approximation’ (in terms of non-Archimedean elements) to the desired result actually holds, although any Archimedean partially ordered group is necessarily D-distributive.


2019 ◽  
Vol 38 (5) ◽  
pp. 215-232
Author(s):  
Mamoon Ahmed

Let (G; P) be a quasi-lattice ordered group. In this paper we present a modied proof of Laca and Raeburn's theorem about the covariant isometric representations of amenable quasi-lattice ordered groups [7, Theorem 3.7], by following a two stage strategy. First, we construct a universal covariant representation for a given quasi-lattice ordered group (G; P) and show that it is unique. The construction of this object is new; we have not followed either Nica's approach in [10] or Laca and Raeburn's approach in [7], although all three objects are essentially the same. Our approach is a very natural one and avoids some of the intricacies of the other approaches. Then we show if (G; P) is amenable, true representations of (G; P) generate C-algebras which are canonically isomorphic to the universal object.


Sign in / Sign up

Export Citation Format

Share Document