Cascade pulse coupled neural network for multimodal medical image fusion

Author(s):  
Yaqian Zhao ◽  
Aimin Hao ◽  
Qinping Zhao
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 591
Author(s):  
Liangliang Li ◽  
Hongbing Ma

Multimodal medical image fusion aims to fuse images with complementary multisource information. In this paper, we propose a novel multimodal medical image fusion method using pulse coupled neural network (PCNN) and a weighted sum of eight-neighborhood-based modified Laplacian (WSEML) integrating guided image filtering (GIF) in non-subsampled contourlet transform (NSCT) domain. Firstly, the source images are decomposed by NSCT, several low- and high-frequency sub-bands are generated. Secondly, the PCNN-based fusion rule is used to process the low-frequency components, and the GIF-WSEML fusion model is used to process the high-frequency components. Finally, the fused image is obtained by integrating the fused low- and high-frequency sub-bands. The experimental results demonstrate that the proposed method can achieve better performance in terms of multimodal medical image fusion. The proposed algorithm also has obvious advantages in objective evaluation indexes VIFF, QW, API, SD, EN and time consumption.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jingming Xia ◽  
Yi Lu ◽  
Ling Tan

Visual effects of medical image have a great impact on clinical assistant diagnosis. At present, medical image fusion has become a powerful means of clinical application. The traditional medical image fusion methods have the problem of poor fusion results due to the loss of detailed feature information during fusion. To deal with it, this paper proposes a new multimodal medical image fusion method based on the imaging characteristics of medical images. In the proposed method, the non-subsampled shearlet transform (NSST) decomposition is first performed on the source images to obtain high-frequency and low-frequency coefficients. The high-frequency coefficients are fused by a parameter‐adaptive pulse-coupled neural network (PAPCNN) model. The method is based on parameter adaptive and optimized connection strength β adopted to promote the performance. The low-frequency coefficients are merged by the convolutional sparse representation (CSR) model. The experimental results show that the proposed method solves the problems of difficult parameter setting and poor detail preservation of sparse representation during image fusion in traditional PCNN algorithms, and it has significant advantages in visual effect and objective indices compared with the existing mainstream fusion algorithms.


Sign in / Sign up

Export Citation Format

Share Document