parameter adaptive
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 63)

H-INDEX

27
(FIVE YEARS 6)

2021 ◽  
Vol 2113 (1) ◽  
pp. 012029
Author(s):  
Jie Jin ◽  
Lan Li ◽  
Haiyang Yu ◽  
Shengzhou Feng

Abstract Traditional virtual synchronous generators (VSG) control inverters. Inverter output frequency characteristic of the virtual inertia (J) and virtual damping (D) coefficient, and the virtual parameters need to be modified and adjusted according to the purpose. To solve this problem, this paper proposes a virtual parameter adaptive control strategy based on fuzzy control theory to adjust the frequency characteristics of VSG. MATLAB/Simulink is used to build a simulation model to verify the correctness of the proposed fuzzy control theory’s adaptive virtual parameter theory.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1402
Author(s):  
Xiaoan Yan ◽  
Yadong Xu ◽  
Daoming She ◽  
Wan Zhang

When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.


Machines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 181
Author(s):  
Yaowen Ge ◽  
Xiaowei Yang ◽  
Wenxiang Deng ◽  
Jianyong Yao

The electro-hydrostatic actuator (EHA), the actuator of electric drive and hydraulic transmission, is competitive since it is small in size, light in weight and high in power density. However, the existence of the velocity loop error of servo motors, unmodeled dynamics and highly nonlinear uncertainties restrict the improvement of the tracking accuracy of the EHA system. In order to achieve high-precision motion control of EHAs, a RISE-based composite adaptive control scheme is proposed in this paper. In the proposed composite adaptive control design, a novel parameter adaptive law is synthesized to compensate for the parametric uncertainties and a robust integral of the sign of error (RISE) feedback is utilized to suppress the adverse effects caused by the lumped disturbances, including the velocity loop error of a servo motor and other unmodeled dynamics. The synthesized parameter adaptive law possesses the advantage of fast convergence, which is beneficial to achieve transient tracking performance improvement. In addition, the proposed controller is more suitable for practical applications since it is chattering free. The closed-loop system stability analysis shows that the proposed control scheme guarantees an excellent asymptotic tracking performance. Finally, comparative simulations are conducted to verify the high-performance nature of the proposed controller.


2021 ◽  
Author(s):  
Jingwei hou ◽  
Dingxuan Zhao ◽  
Zhuxin Zhang

Abstract A novel trajectory tracking strategy is developed for the swing DOF with double actuated cylinder in a hydraulic construct robot. When the work object is grabbed and unload, the inertia parameter of swing varies greatly and the estimation algorithm is commonly insufficient. Aiming at this feature, a novel nonlinear hydraulic dynamics model is established for the double actuated hydraulic cylinder in the system and a robust adaptive control strategy with parameter adaptive estimation is designed to improve the trajectory tracking performance. Aiming at the problem of insufficient convergence speed of the identification algorithm, a method of robotic gravity identification combined with stereo vision information is proposed to obtain the mass and moment of inertia parameters of the working object so that the initial value is close to the real value. Simulations and experiments are presented to validate the effect of the novel strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Cuixing Li ◽  
Yongqiang Liu ◽  
Yingying Liao

Variational mode decomposition (VMD) has been applied in the field of rolling bearing fault diagnosis because of its good ability of frequency segmentation. Mode number K and quadratic penalty term α have a significant influence on the decomposition result of VMD. At present, the commonly used method is to determine these two parameters adaptively through intelligent optimization algorithm, namely, the parameter-adaptive VMD (PAVMD) method. The key of the PAVMD method is the setting of an objective function, and the traditional PAVMD method is prone to overdecomposition or underdecomposition. To solve these problems, an improved parameter-adaptive VMD (IPAVMD) method is proposed. A new objective function, the maximum average envelope kurtosis (MAEK), is proposed in this paper. The new objective function fully considers the equivalent filtering characteristics of VMD, and squared envelope kurtosis has good antinoise performance. In the optimization method, this paper uses an improved particle swarm optimization (PSO) algorithm. The MAEK and PSO can make sure the IPAVMD method reaches the best complete decomposition of the signal without an underdecomposition or overdecomposition problem. Through the analysis of simulation data and experimental data, the performance of the IPAVMD and the traditional PAVMD is compared. The comparison results show that the proposed IPAVMD has better performance and stronger robustness than the traditional method and is suitable for both single-fault and multiple-fault cases of rolling bearings. The research results have certain theoretical significance and application value for improving the fault diagnosis effect of rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document