Convective heating on delta-wing space-shuttle boosters including interference effects

1972 ◽  
1972 ◽  
Vol 9 (12) ◽  
pp. 876-882
Author(s):  
R. O. DOUGHTY ◽  
R. C. ERICKSON ◽  
O. R. BROCK ◽  
T. W. MOORE ◽  
J. V. CLIFTON

2005 ◽  
Vol 42 (1) ◽  
pp. 189-198 ◽  
Author(s):  
M. R. Allan ◽  
K. J. Badcock ◽  
G. N. Barakos ◽  
B. E. Richards

Author(s):  
H.J. Zuo ◽  
M.W. Price ◽  
R.D. Griffin ◽  
R.A. Andrews ◽  
G.M. Janowski

The II-VI semiconducting alloys, such as mercury zinc telluride (MZT), have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities and crystallographic imperfections adversly affect the performance of MZT infrared detectors. One source of imperfections in MZT is gravity-induced convection during directional solidification. Crystal growth experiments conducted in space should minimize gravity-induced convection and thereby the density of related crystallographic defects. The limited amount of time available during Space Shuttle experiments and the need for a sample of uniform composition requires the elimination of the initial composition transient which occurs in directionally solidified alloys. One method of eluding this initial transient involves directionally solidifying a portion of the sample and then quenching the remainder prior to the space experiment. During the space experiment, the MZT sample is back-melted to exactly the point at which directional solidification was stopped on earth. The directional solidification process then continues.


Author(s):  
D. E. Johnson ◽  
S. Csillag

Recently, the applications area of analytical electron microscopy has been extended to include the study of Extended Energy Loss Fine Structure (EXELFS). Modulations past an ionization edge in the energy loss spectrum (EXELFS), contain atomic fine structure information similar to Extended X-ray Absorbtion Fine Structure (EXAFS). At low momentum transfer the main contribution to these modulations comes from interference effects between the outgoing excited inner shell electron waves and electron waves backscattered from the surrounding atoms. The ability to obtain atomic fine structure information (such as interatomic distances) combined with the spatial resolution of an electron microscope is unique and makes EXELFS an important microanalytical technique.


Sign in / Sign up

Export Citation Format

Share Document