uniform composition
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 11 (24) ◽  
pp. 11898
Author(s):  
Alina Popa ◽  
Sebastian Springer

Nanoparticles are components of many vaccines, helping to make them more stable and immunogenic. They protect antigens—or the genetic material encoding them—from degradation, target them to particular tissues or cells, promote their uptake into antigen-presenting cells, and activate the immune response (in the form of adjuvants). Nanoparticles come in many different kinds, some with uniform composition and some with elaborate core-and-shell structures, including lipid membranes. The antigen is usually retained inside, and the surface can be functionalized by targeting or activating proteins and carbohydrates. This minireview provides a general introductory overview to vaccination and a survey of nanoparticles, their types, production, characteristics, and individual applications in vaccines, and finally, a brief look into the world of artificial antigen-presenting cells.


2021 ◽  
Vol 922 (2) ◽  
pp. L27
Author(s):  
Shang-Min Tsai ◽  
Hamish Innes ◽  
Tim Lichtenberg ◽  
Jake Taylor ◽  
Matej Malik ◽  
...  

Abstract Planets smaller than Neptune and larger than Earth make up the majority of the discovered exoplanets. Those with H2-rich atmospheres are prime targets for atmospheric characterization. The transition between the two main classes, super-Earths and sub-Neptunes, is not clearly understood as the rocky surface is likely not accessible to observations. Tracking several trace gases (specifically the loss of ammonia (NH3) and hydrogen cyanide (HCN)) has been proposed as a proxy for the presence of a shallow surface. In this work, we revisit the proposed mechanism of nitrogen conversion in detail and find its timescale on the order of a million years. NH3 exhibits dual paths converting to N2 or HCN, depending on the UV radiation of the star and the stage of the system. In addition, methanol (CH3OH) is identified as a robust and complementary proxy for a shallow surface. We follow the fiducial example of K2-18b with a 2D photochemical model on an equatorial plane. We find a fairly uniform composition distribution below 0.1 mbar controlled by the dayside, as a result of slow chemical evolution. NH3 and CH3OH are concluded to be the most unambiguous proxies to infer surfaces on sub-Neptunes in the era of the James Webb Space Telescope.


2021 ◽  
Vol 74 (3) ◽  
pp. 253-271
Author(s):  
Tomislav Kurečić ◽  
◽  
Marijan Kovačić ◽  
Anita Grizelj ◽  
◽  
...  

Viviparus beds are sediments deposited in lacustrine and fluvial freshwater environments (Lake Slavonia) during the Pliocene and the earliest Pleistocene. A detailed field study and mineralogical, petrographic and chemical analyses were carried out to determine their composition and origin in the area of Vukomeričke Gorice, Central Croatia. Viviparus beds are characterized by the vertical and lateral exchange of mineralogically and chemically mature pelites and sands. Pelitic sediments consist mainly of detrital quartz, calcite, dolomite and feldspar grains, with smectite as the most common clay mineral. Quartz and the most resistant lithic fragments dominate the sandy detritus. The composition of the sediments indicates their origin from the recycled orogen, while their textural immaturity suggests a short transport distance. Most of the material was re-deposited from the underlying Upper Miocene sediments, originally of Alpine provenance. A lesser proportion originated from Palaeogene sediments, Triassic carbonate rocks, basic or acidic magmatic rocks and metamorphites. The Medvednica and Žumberak Mts. were the most important source areas, while a smaller proportion of the material could have come from the Moslavačka gora Mt. and Banovina region. The uniform composition of the Viviparus beds over the entire vertical distribution of the sediments clearly indicates that the source areas did not change during their deposition. A significant change from the texturally and compositionally mature Upper Miocene clastic detritus of alpine origin, to the texturally immature material of the Viviparus beds of local origin is a consequence of compression and inversion of the previously extensional basin resulting in the uplifting and erosion of the mountains within the SW part of the Pannonian Basin System.


2021 ◽  
Vol 53 (3) ◽  
Author(s):  
Abdelkrim Ferdji ◽  
Nora Mimoune ◽  
Tahar Amrouche ◽  
Djilali Degui ◽  
Soraya Temim ◽  
...  

This study aimed to determine the resistance of coccidia to ionophores used in broiler farms in Tizi-Ouzou province, Algeria. Droppings were collected and recovered Eimeria oocyst isolates were analysed by morphometry to determine their composition, and then inoculated by peros into chicks of the Arbor Acres strain, reared on the ground. Four of six groups of chicks were treated to test the sensitivity of oocysts to four anticoccidial agents added to their growth feeds [(robenidine (33 ppm), monensin (120 ppm), narasin-nicarbazin (80 ppm) and salinomycin (60 ppm)], while the other two groups were controls. The results revealed the presence of total resistance to monensin and robenidine, and partial resistance to salinomycin and the narasin-nicarbazin combination. The lack of sensitivity to monensin and robenidine was unsurprising, given their inappropriate and unreasonable use for years as the only anticoccidial compounds. The appearance of partial resistance to narasin-nicarbazin and salinomycin suggests the development of cross-resistance in the Eimeria population. The possibility of a relatively uniform composition of Eimeria species collected in these farms indicates that Eimeria acervulina and Eimeria maxima develop resistance more quickly to these ionophores. Finally, a control strategy must be rigorously developed by considering other molecules that are alternatives to anticoccidials.


2021 ◽  
Vol 36 (16) ◽  
pp. 3167-3181
Author(s):  
M. R. Jones ◽  
F. W. DelRio ◽  
J. W. Pegues ◽  
P. Lu ◽  
R. Puckett ◽  
...  

Abstract Ni-based superalloys have been studied extensively due to their impressive mechanical properties, including strength and creep resistance at high temperatures. Growing interest surrounding additive manufacturing (AM) methods has led to recent investigations of alloys that are traditionally difficult to process, including Ni-based superalloys. Recent work has shown that AM methods enable high-throughput materials discovery and optimization of difficult- or impractical-to-process alloys, including those with high or even majority refractory element compositions. This work focuses on AM-enabled investigations of composition-dependent mechanical and microstructural properties for Ni–Nb binary alloys. Specifically, we report on the mechanical behavior of compositionally-graded NixNb1−x and uniform composition Ni59.5Nb40.5 specimens made with AM. The AM fabrication process resulted in extraordinarily high strength, attributed to the formation of a dual-phase microstructure consisting of δ-Ni3Nb and µ-Ni6Nb7 intermetallic compounds with nanostructured and multimodal grain size and eutectic lamellar spacing. Graphic Abstract


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 590
Author(s):  
Hui Li ◽  
Jinglong Liang ◽  
Hongyan Yan ◽  
Yungang Li ◽  
Le Wang

A new way of preparing W–Cu functional gradient materials (FGM) with molten salts electrodeposition is studied. The results show that, with the conditions of current density 70 mA·cm−2, electrodeposition temperature 700 °C and bidirectional pulse electrodepositing for 30 minutes (min), the Cu–Ni gradient layer prepared under this condition is widely used dense and smooth. Fundamental to the preparation of Cu–Ni functional gradient layer, Cu–Ni is used as a cathode to deposit W. Under the current density of 50 mA·cm−2, the time of 20 min, with bidirectional pulse electrodeposition, the Cu+Ni+W gradient layer has uniform composition gradient change and larger thickness. The W–Cu gradient materials prepared in this study have good cohesiveness. The addition of Ni would promote the inter-diffusion of Cu and W, and increase the diffusion coefficient significantly.


2021 ◽  
Vol 15 (3) ◽  
pp. 359-365
Author(s):  
Makoto Nikawa ◽  
Daichi Sasai ◽  
Yoshiki Mizutani ◽  
Minoru Yamashita ◽  
◽  
...  

This study investigated a method for accurately predicting the residual stress in die castings manufactured using aluminum alloy. To account for the mechanical properties caused by the material composition differences that occur in the thickness direction of the die castings, a model split in the thickness direction was used in the simulation model. Norton’s law was applied to the constitutive equation of the material, and the stress relaxation phenomenon was examined. The composition of Al-Si-Cu alloy (JIS-ADC12) die castings in the thickness direction were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), and differences in composition were confirmed. As a result of calculating the residual stress using the simulation, it was possible to calculate the residual stress that could not be reproduced by the simulation model of uniform composition. This suggested that the difference in mechanical properties of die castings in the micro-region influences the residual stress.


Author(s):  
H. Palme

Early models of the composition of the Earth relied heavily on meteorites. In all these models Earth had different layers, each layer corresponded to a different type of meteorite or meteorite component. Later, more realistic models based on analyses of samples from Earth began with Ringwood’s pyrolite composition in the 1960s. Further improvement came with the analyses of rare MgO rich peridotites from a variety of occurrences all over the Earth, as xenoliths enclosed in melts from the upper mantle or as ultramafic massifs, tectonically emplaced on the Earth’s surface. Chemical systematics of these rocks allow the determination of the major element composition of the primitive upper mantle (PUM), the upper mantle after core formation and before extraction of basalts ultimately leading to the formation of the crust. Trace element analyses of upper mantle rocks confirmed their primitive nature. Geochemical and geophysical evidence argue for a bulk Earth mantle of uniform composition, identical to the PUM, also designated as “bulk silicate Earth” (BSE). The formation of a metal core was accompanied by the removal of siderophile and chalcophile elements into the core. Detailed modeling suggests that core formation was an ongoing process parallel to the accretion of Earth. The composition of the core is model dependent and thus uncertain and makes reliable estimates for siderophile and chalcophile element concentrations of bulk Earth difficult. Improved stable isotope analyses show isotopic similarities with noncarbonaceous chondrites (NCC), while the chemical composition of the mantle of the Earth indicates similarities with carbonaceous chondrites (CC). In detail, however, it can be shown that no single known meteorite group, nor any mixture of meteorite groups can match the chemical and isotopic composition of Earth. This conclusion is extremely important for any formation model of the Earth.


Author(s):  
Stanislav V. Ryabtsev ◽  
Dina A. A. Ghareeb ◽  
Alexander A. Sinelnikov ◽  
Sergey Yu. Turishchev ◽  
Lyudmila A. Obvintseva ◽  
...  

Thin film semiconductor sensors based on palladium oxide were produced to analyse the concentration of ozone in the air. The palladium oxide films were obtained by means of thermal oxidation of ~ 20-30 nm metal in air at various temperatures. The oxide films were studied using electron microscopy and reflection high-energy electron diffraction. The optical, electrophysical, and gas sensitivity properties of the films were investigated. The study determined the optimal oxidation annealing temperature that ensures the uniform composition of the films and absence of electrical noise affecting the gas detection process. The article explains that electrical noise in ultrathin films is caused by their fragmentation during oxidation annealing. The study demonstrated the high sensitivity of the obtained films to oxide.


2020 ◽  
Vol 21 (1) ◽  
pp. 257-280
Author(s):  
Joanna Beata Kowalska ◽  
Michał Skiba ◽  
Katarzyna Maj-Szeliga ◽  
Ryszard Mazurek ◽  
Tomasz Zaleski

Abstract Purpose Literature reported that soils characterized by heterogeneity would reveal the different direction of clay minerals transformation. Hence, in this study, four soils developed on menilite shales slope deposits were investigated to test if the clay minerals transformations in soils with varied calcium carbonate distribution would show multidirectional paths of clay mineral weathering, or if transformation of secondary phases in such stratified materials would reveal only one trajectory. Methods The separated clay fractions were analysed using X-ray diffractometry and Fourier-transform infrared spectroscopy. Geochemical analyses were performed using ICP-ES and ICP-MS after sample fusion with lithium borate and an alloy dissolution with nitric acid. Results Calcium carbonate did not influence the composition and transformation of clay minerals. Despite the fact that soils were characterized by different content and distribution of calcium carbonate within the solum and additionally indicated various morphological features, the mineralogical composition of clay fraction was very uniform. Among the secondary phases, chlorite, illite, vermiculite, kaolinite and mixed phases illite-smectite and vermiculite-chlorite were detected in all horizons. Conclusions The uniform composition of the clay minerals in the studied soils suggested that mass movement, which controlled the formation of slope covers, was probably of a similar character and intensity across the whole of the slope. Furthermore, it seems that the pedogenesis in all soils proceeded on the same scale of advancement. This was indicated by a similar degree of weathering of soil material and lack of depth-dependent weathering in the profiles, confirmed by values of weathering indices (CIA and ICV) as well as by micromorphologically visible, highly weathered coarse fragments. Moreover, weak intensity of the illuviation process within the homogeneous substrate could have resulted in the very uniform composition of clay minerals in the studied soils.


Sign in / Sign up

Export Citation Format

Share Document