Very high altitude tethered balloon parametric sensitivity study

Author(s):  
Surjit Badesha ◽  
Anthony Euler ◽  
Larry Schroder
1995 ◽  
Author(s):  
Anthony Euler ◽  
Surjit Badesha ◽  
Larry Schroeder

1996 ◽  
Author(s):  
Surjit Badesha ◽  
Anthony Euler ◽  
Larry Schroder

SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 761-775 ◽  
Author(s):  
Shayan Tavassoli ◽  
Gary A. Pope ◽  
Kamy Sepehrnoori

Summary A systematic simulation study of gravity-stable surfactant flooding was performed to understand the conditions under which it is practical and to optimize its performance. Different optimization schemes were introduced to minimize the effects of geologic parameters and to improve the performance and the economics of surfactant floods. The simulations were carried out by use of horizontal wells in heterogeneous reservoirs. The results show that one can perform gravity-stable surfactant floods at a reasonable velocity and with very-high sweep efficiencies for reservoirs with high vertical permeability. These simulations were carried out with a 3D fine grid and a third-order finite-difference method to accurately model fingering. A sensitivity study was conducted to investigate the effects of heterogeneity and well spacing. The simulations were performed with realistic surfactant properties on the basis of laboratory experiments. The critical velocity for a stable surfactant flood is a function of the microemulsion (ME) viscosity, and it turns out there is an optimum value that one can use to significantly increase the velocity and still be stable. One can optimize the salinity gradient to gradually change the ME viscosity. Another alternative is to inject a low-concentration polymer drive following the surfactant slug (without polymer). Polymer complicates the process and adds to its cost without a significant benefit in most gravity-stable surfactant floods, but an exception is when the reservoir is highly layered. The effect of an aquifer on gravity-stable surfactant floods was also investigated, and strategies were developed for minimizing its effect on the process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ivan Lopez ◽  
Reinaldo Aravena ◽  
Daniel Soza ◽  
Alicia Morales ◽  
Silvia Riquelme ◽  
...  

The Chilean workforce has over 200,000 people that are intermittently exposed to altitudes over 4,000 m. In 2012, the Ministry of Health provided a technical guide for high-altitude workers that included a series of actions to mitigate the effects of hypoxia. Previous studies have shown the positive effect of oxygen enrichment at high altitudes. The Atacama Large Millimeter/submillimeter Array (ALMA) radiotelescope operates at 5,050 m [Array Operations Site (AOS)] and is the only place in the world where pressure swing adsorption (PSA) and liquid oxygen technologies have been installed at a large scale. These technologies reduce the equivalent altitude by increasing oxygen availability. This study aims to perform a retrospective comparison between the use of both technologies during operation in ALMA at 5,050 m. In each condition, variables such as oxygen (O2), temperature, and humidity were continuously recorded in each AOS rooms, and cardiorespiratory variables were registered. In addition, we compared portable O2 by using continuous or demand flow during outdoor activities at very high altitudes. The outcomes showed no differences between production procedures (PSA or liquid oxygen) in regulating oxygen availability at AOS facilities. As a result, big-scale installations have difficulties reaching the appropriate O2 concentration due to leaks in high mobility areas. In addition, the PSA plant requires adequacy and maintenance to operate at a very high altitude. A continuous flow of 2–3 l/min of portable O2 is recommended at 5,050 m.


Author(s):  
Maciej Abakumow ◽  
◽  
Krzysztof Kowalczuk ◽  

Abstract: Apart from protection from very high altitude or influence of increased gravitational accelerations protective suits sometimes are used for another applications like supporting kinesitherapy. Because of some safety considerations connected with possible cardiovascular system overload and dangerous blood pressure increase we tested if these concerns are valid. Main aim ot presented research performed with participation of healthy volunteers was to confirm that use of High Altitude Protection (HAP) suit is safe in terms of increased cardiovascular.


Sign in / Sign up

Export Citation Format

Share Document