Extension of a kappa-omega two-equation turbulence model to an algebraic Reynolds stress model

Author(s):  
M. Malone
Author(s):  
S. Y. Jaw ◽  
R. R. Hwang

To improve the prediction of turbulent flows, a two-scale, non-linear Reynolds stress turbulence model is proposed in this study. It is known that for the near-wall low-Reynolds number turbulent flows, the Kolmogorov turbulence scale, based on the fluid kinematic viscosity and dissipation rate of turbulent kinetic energy (ν,ε), is the dominant turbulence scale, hence it is adopted to address the viscous effects and the rapid increase of dissipation rate in the near wall region. As a wall is approached, the turbulence scale transits smoothly from turbulent kinetic energy based (k, ε) scale to (ν,ε) scale. The damping functions of the low-Reynolds number models can thus be simplified and the near-wall turbulence characteristics, such as the ε distribution, are correctly reproduced. Furthermore, to improve the prediction of the anisotropic Reynolds stresses for complex flows, a nonlinear algebraic Reynolds stress model is incorporated. The same turbulence scales are adopted in the nonlinear algebraic Reynolds stress model. The developed two-scale non-linear Reynolds stress model is first calibrated with the DNS budgets of two-dimensional channel flows, and then applied to predict the separation flow behind a backward facing step. It is found that the proposed two-scale nonlinear Reynolds stress turbulence model is capable of providing satisfactory results without increasing much computation efforts or causing numerical stability problems.


Author(s):  
Benjamin H. Taylor ◽  
Tausif Jamal ◽  
D. Keith Walters

Abstract The presence of complex vortical structures, unsteady wakes, separated shear layers, and streamline curvature pose considerable challenges for traditional linear Eddy-Viscosity (LEV) models. Since Non-Linear Eddy Viscosity Models (NEV) models contain additional strain-rate and vorticity relationships, they can provide a better description for flows with Reynolds stress anisotropy and can be considered to be suitable alternatives to traditional EVMs in some cases. In this study, performance of a Non-Linear Explicit Algebraic Reynolds Stress Model (NEARSM) to accurately resolve flow over a surface mounted cube and a 3D axisymmetric hill is evaluated against existing experimental and numerical studies. Numerical simulations were performed using the SST k-ω RANS model, SST k-ω-NEARSM, SST-Multiscale LES model, and two variants of the Dynamic Hybrid RANS-LES (DHRL) model that include the SST k-ω and the SST k-ω-NEARSM as the RANS models. Results indicate that the SST k-ω RANS model fails to accurately predict the flowfield in the separated wake region and although the SST-NEARSM and SST-Multiscale LES models provide an improved description of the flow, they suffer from incorrect RANS-LES transition caused by Modeled Stress Depletion (MSD) and sensitivity to changes in grid resolution. The SST-DHRL and the SST-NEARSM-DHRL variants provide the best agreement to experimental and numerical data.


Sign in / Sign up

Export Citation Format

Share Document