dissipation rate
Recently Published Documents


TOTAL DOCUMENTS

1134
(FIVE YEARS 241)

H-INDEX

61
(FIVE YEARS 6)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Jeffrey Chi Wai Lee ◽  
Christy Yan Yu Leung ◽  
Mang Hin Kok ◽  
Pak Wai Chan

A comparison was made of two eddy dissipation rate (EDR) estimates based on flight data recorded by commercial flights. The EDR estimates from real-time data using the National Center for Atmospheric Research (NCAR) Algorithm were compared with the EDR estimates derived using the Netherlands Aerospace Centre (NLR) Algorithm using quick assess recorder (QAR) data. The estimates were found to be in good agreement in general, although subtle differences were found. The agreement between the two algorithms was better when the flight was above 10,000 ft. The EDR estimates from the two algorithms were also compared with the vertical acceleration experienced by the aircraft. Both EDR estimates showed good correlation with the vertical acceleration and would effectively capture the turbulence subjectively experienced by pilots.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Yanjun Li ◽  
Qixu Lin ◽  
Fan Meng ◽  
Yunhao Zheng ◽  
Xiaotian Xu

In order to study the influence of tip clearance on the performance and energy dissipation of the axial-flow pump and the axial-flow pump as a turbine, and find the location of high dissipation rate, this study took an axial-flow pump model as its research object and designed four tip radial clearance schemes (0, 0.2, 1 and 2 mm). The unsteady calculation simulation of each tip clearance scheme was carried out based on CFD technology. The calculated results were compared with the experimental results, and the simulation results were analyzed using entropy production analysis theory. The results showed that, under both an axial-flow pump and axial-flow pump as turbine operating conditions, increasing the blade tip clearance led to a decrease in hydraulic performance. Compared with the 0 mm clearance, the maximum decreases in pump efficiency, head and shaft power under 2 mm tip clearance were 15.3%, 25.7% and 12.3% under the pump condition, and 12.7%, 18.5% and 28.8% under the turbine condition, respectively. Under the axial-flow pump operating condition, the change in blade tip clearance had a great influence on the total dissipation of the impeller, guide vane and outlet passage, and the maximum variation under the flow rate of 1.0 was 53.9%, 32.1% and 54.2%, respectively. Under the axial-flow pump as a turbine operating condition, the change in blade tip clearance had a great influence on the total dissipation of the impeller and outlet passage, the maximum variation under the flow rate of 1.0 was 22.7% and 17.4%, respectively. Under the design flow rate condition, with the increase in tip clearance, the dissipation rate of the blade surface showed an increasing trend under both the axial-flow pump and axial-flow pump as turbine operating conditions, and areas of high dissipation rate were generated at the rim and clearance.


2022 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Jiaxin Liu ◽  
Xiaoquan Song ◽  
Wenrui Long ◽  
Yiyuan Fu ◽  
Long Yun ◽  
...  

The Doppler lidar system can accurately obtain wind profiles with high spatiotemporal resolution, which plays an increasingly important role in the research of atmospheric boundary layers and sea–land breeze. In September 2019, Doppler lidars were used to carry out observation experiments of the atmospheric wind field and pollutants in Shenzhen. Weather Research and Forecasting showed that the topography of Hongkong affected the sea breeze to produce the circumfluence flow at low altitudes. Two sea breezes from the Pearl River Estuary and the northeast of Hong Kong arrived at the observation site in succession, changing the wind direction from northeast to southeast. Based on the wind profiles, the structural and turbulent characteristics of the sea breeze were analyzed. The sea breeze front was accurately captured by the algorithm based on fuzzy logic, and its arrival time was 17:30 on 25 September. The boundary between the sea breeze and the return flow was separated by the edge enhancement algorithm. From this, the height of the sea breeze head (about 1100 m) and the thickness of the sea breeze layer (about 700 m) can be obtained. The fluctuated height of the boundary and the spiral airflow nearby revealed the Kelvin–Helmholtz instability. The influence of the Kelvin–Helmholtz instability could be delivered to the near-surface, which was verified by the spatiotemporal change of the horizontal wind speed and momentum flux. The intensity of the turbulence under the control of the sea breeze was significantly lower than that under the land breeze. The turbulent intensity was almost 0.1, and the dissipation rate was between 10−4 and 10−2 m2·s−3 under the land breeze. The turbulent intensity was below 0.05, and the dissipation rate was between 10−5 and 10−3 m2·s−3 under the sea breeze. The turbulent parameters showed peaks and large gradients at the boundary and the sea breeze front. The peak value of the turbulent intensity was around 0.3, and the dissipation rate was around 0.1 m2·s−3. The round-trip effect of sea–land breeze caused circulate pollutants. The recirculation factor was maintained at 0.5–0.6 at heights where the sea and land breeze alternately controlled (below 600 m), as well as increasing with a decreasing duration of the sea breeze. The factor exceeded 0.9 under the control of the high-altitude breeze (above 750 m). The convergence and rise of the airflow at the front led to collect pollutants, causing a sharp decrease in air quality when the sea breeze front passed.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 107
Author(s):  
Fabian Freiberger ◽  
Jens Budde ◽  
Eda Ateş ◽  
Michael Schlüter ◽  
Ralf Pörtner ◽  
...  

The link between hydrodynamics and biological process behavior of antibody-producing mammalian cell cultures is still not fully understood. Common methods to describe dependencies refer mostly to averaged hydrodynamic parameters obtained for individual cultivation systems. In this study, cellular effects and locally resolved hydrodynamics were investigated for impellers with different spatial hydrodynamics. Therefore, the hydrodynamics, mainly flow velocity, shear rate and power input, in a single- and a three-impeller bioreactor setup were analyzed by means of CFD simulations, and cultivation experiments with antibody-producing Chinese hamster ovary (CHO) cells were performed at various agitation rates in both reactor setups. Within the three-impeller bioreactor setup, cells could be cultivated successfully at much higher agitation rates as in the single-impeller bioreactor, probably due to a more uniform flow pattern. It could be shown that this different behavior cannot be linked to parameters commonly used to describe shear effects on cells such as the mean energy dissipation rate or the Kolmogorov length scale, even if this concept is extended by locally resolved hydrodynamic parameters. Alternatively, the hydrodynamic heterogeneity was statistically quantified by means of variance coefficients of the hydrodynamic parameters fluid velocity, shear rate, and energy dissipation rate. The calculated variance coefficients of all hydrodynamic parameters were higher in the setup with three impellers than in the single impeller setup, which might explain the rather stable process behavior in multiple impeller systems due to the reduced hydrodynamic heterogeneity. Such comprehensive insights lead to a deeper understanding of the bioprocess.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 85
Author(s):  
Xin Ma ◽  
Jianmin Zhang ◽  
Yaan Hu

The water flow characteristics over an interval-pooled stepped spillway are investigated by combining the renormalization group (RNG) k-ε turbulence model with the volume of fluid (VOF) interface capture technique in the present study. The results show that the energy dissipation performance of the interval-pooled stepped spillway was generally better than that of the pooled, stepped spillways and the traditional flat-panel stepped spillway. The omega vortex intensity identification method is introduced to evaluate the energy dissipation. Due to the formation of “pseudo-weir”, the energy dissipation did not increase with the growth of the pool’s height. In addition, the average vortex intensity can characterize the dissipation rate to some extent.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
X. B. Gu ◽  
Q. H. Wu ◽  
Y. Wang ◽  
H. X. Zhao

The ladder-shaped spillway in a certain reservoir junction is set as the engineering background in the paper. The hydraulic similarly model experiment and three-dimensional numerical simulation of hydraulic characteristics of water flow are performed. The outflow capacity, flow state analysis, velocity distribution, water surface line, pressure, and the energy dissipation rate are analyzed, and experimental results are compared with the numerical results. The conclusions demonstrate that the numerical results of the flow characteristics are very proximate to actual experimental results, the changeable law is the same, and their energy dissipation rate is basically consistent; it shows the feasibility of three-dimensional numerical simulation; the conclusions can provide the basis for the optimization about the flow state of the ladder-shaped spillway in the future.


2021 ◽  
Vol 933 ◽  
Author(s):  
Xi Chen ◽  
Katepalli R. Sreenivasan

The dominant paradigm in turbulent wall flows is that the mean velocity near the wall, when scaled on wall variables, is independent of the friction Reynolds number $Re_\tau$ . This paradigm faces challenges when applied to fluctuations but has received serious attention only recently. Here, by extending our earlier work (Chen & Sreenivasan, J. Fluid Mech., vol. 908, 2021, p. R3) we present a promising perspective, and support it with data, that fluctuations displaying non-zero wall values, or near-wall peaks, are bounded for large values of $Re_\tau$ , owing to the natural constraint that the dissipation rate is bounded. Specifically, $\varPhi _\infty - \varPhi = C_\varPhi \,Re_\tau ^{-1/4},$ where $\varPhi$ represents the maximum value of any of the following quantities: energy dissipation rate, turbulent diffusion, fluctuations of pressure, streamwise and spanwise velocities, squares of vorticity components, and the wall values of pressure and shear stresses; the subscript $\infty$ denotes the bounded asymptotic value of $\varPhi$ , and the coefficient $C_\varPhi$ depends on $\varPhi$ but not on $Re_\tau$ . Moreover, there exists a scaling law for the maximum value in the wall-normal direction of high-order moments, of the form $\langle \varphi ^{2q}\rangle ^{{1}/{q}}_{max}= \alpha _q-\beta _q\,Re^{-1/4}_\tau$ , where $\varphi$ represents the streamwise or spanwise velocity fluctuation, and $\alpha _q$ and $\beta _q$ are independent of $Re_\tau$ . Excellent agreement with available data is observed. A stochastic process for which the random variable has the form just mentioned, referred to here as the ‘linear $q$ -norm Gaussian’, is proposed to explain the observed linear dependence of $\alpha _q$ on $q$ .


Author(s):  
Erdinc Ikinciogullari ◽  

Stepped spillways are a more effective type of spillway in energy dissipation than conventional chute channels. Therefore, the dimensions of the energy breaker at the downstream of the stepped spillways are lower. It is an alternative especially for the downstream pool that cannot be built in sufficient length due to the terrain conditions. In this study, the energy dissipation performance of the trapezoidal stepped spillways was investigated numerically by using Flow3D software. Four different models and three different discharges were utilized for this aim. According to the results, the trapezoidal stepped spillway is more effective up to 30% than classical stepped spillways in energy dissipation. The depth of the trapezoidal step and the bottom base length of the trapezoid significantly affected the energy dissipation rate for the trapezoidal stepped spillway.


Author(s):  
Alex Baron

Abstract In this paper, we propose a new method for calculation of hydraulic resistance of channels with constant cross-section. The method is based on the obtained estimates for the average energy dissipation rate in a turbulent flow. The first part of the paper is devoted to theoretical justification of the method. The second part is devoted to calculation of hydraulic resistance of various channels using the abovementioned method and comparison of these values with the known results. The proposed method allows for calculation of hydraulic resistance of various channels with sufficiently high accuracy and is based only on the information about the channel geometry.


2021 ◽  
Author(s):  
Viktor A. Banakh ◽  
Andrey V. Falits ◽  
Artem A. Sukharev ◽  
Artem M. Sherstobitov ◽  
Iya V. Zaloznaya

Sign in / Sign up

Export Citation Format

Share Document