Development and Application of a Two-Scale Non-Linear Reynolds Stress Turbulence Model

Author(s):  
S. Y. Jaw ◽  
R. R. Hwang

To improve the prediction of turbulent flows, a two-scale, non-linear Reynolds stress turbulence model is proposed in this study. It is known that for the near-wall low-Reynolds number turbulent flows, the Kolmogorov turbulence scale, based on the fluid kinematic viscosity and dissipation rate of turbulent kinetic energy (ν,ε), is the dominant turbulence scale, hence it is adopted to address the viscous effects and the rapid increase of dissipation rate in the near wall region. As a wall is approached, the turbulence scale transits smoothly from turbulent kinetic energy based (k, ε) scale to (ν,ε) scale. The damping functions of the low-Reynolds number models can thus be simplified and the near-wall turbulence characteristics, such as the ε distribution, are correctly reproduced. Furthermore, to improve the prediction of the anisotropic Reynolds stresses for complex flows, a nonlinear algebraic Reynolds stress model is incorporated. The same turbulence scales are adopted in the nonlinear algebraic Reynolds stress model. The developed two-scale non-linear Reynolds stress model is first calibrated with the DNS budgets of two-dimensional channel flows, and then applied to predict the separation flow behind a backward facing step. It is found that the proposed two-scale nonlinear Reynolds stress turbulence model is capable of providing satisfactory results without increasing much computation efforts or causing numerical stability problems.

2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


Author(s):  
Benjamin H. Taylor ◽  
Tausif Jamal ◽  
D. Keith Walters

Abstract The presence of complex vortical structures, unsteady wakes, separated shear layers, and streamline curvature pose considerable challenges for traditional linear Eddy-Viscosity (LEV) models. Since Non-Linear Eddy Viscosity Models (NEV) models contain additional strain-rate and vorticity relationships, they can provide a better description for flows with Reynolds stress anisotropy and can be considered to be suitable alternatives to traditional EVMs in some cases. In this study, performance of a Non-Linear Explicit Algebraic Reynolds Stress Model (NEARSM) to accurately resolve flow over a surface mounted cube and a 3D axisymmetric hill is evaluated against existing experimental and numerical studies. Numerical simulations were performed using the SST k-ω RANS model, SST k-ω-NEARSM, SST-Multiscale LES model, and two variants of the Dynamic Hybrid RANS-LES (DHRL) model that include the SST k-ω and the SST k-ω-NEARSM as the RANS models. Results indicate that the SST k-ω RANS model fails to accurately predict the flowfield in the separated wake region and although the SST-NEARSM and SST-Multiscale LES models provide an improved description of the flow, they suffer from incorrect RANS-LES transition caused by Modeled Stress Depletion (MSD) and sensitivity to changes in grid resolution. The SST-DHRL and the SST-NEARSM-DHRL variants provide the best agreement to experimental and numerical data.


Author(s):  
Tausif Jamal ◽  
D. Keith Walters

Abstract Complex turbulent flows such as those encountered in nuclear reactor cooling systems pose considerable challenges for computational fluid dynamics (CFD) simulation using traditional Reynolds-averaged Navier-Stokes (RANS) models based on the linear eddy-viscosity modeling (LEVM) framework. One particular difficulty is the use of low Prandtl number (Pr) fluids such as liquid metal coolants, which considerably alters the fluctuating thermal field and violates the Reynolds analogy upon which turbulent heat flux modeling in LEVMs is based. Although previous studies have shown that Reynolds Stress Models (RSM) offer some improvements over traditional LEVMs for flows containing complex inter-component interaction and Reynolds stress anisotropy, the added complexity, increased computational requirements, and the lack of robustness introduced by traditional RSMs do not always result in an overall improvement. This study evaluates the performance of a newly proposed Algebraic Reynolds Stress Model (ARSM) including an Algebraic Heat Flux Model (AHFM) against two industry standard RANS models, standard k-ε and realizable k-ε model, for a set of canonical test cases relevant to nuclear reactor cooling applications. Numerical simulations using the spectral element code Nek5000 are performed for fully developed channel flows with varying values of Reynolds number (Re) and Pr, both with and without the effects of buoyancy. Results are compared to Direct Numerical Simulation (DNS) data in terms of the velocity and thermal statistics. For all cases investigated, the ARSM model consistently outperforms the other RANS models in this study and it is concluded that the new ARSM model can be a suitable alternative to traditional LEVMs for complex turbulent flows without significant penalty to efficiency and robustness that are commonly associated with traditional RSMs.


Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The 5 mean flow equations and the 7 turbulence model equations are solved using an implicit coupled O(Δx3) upwind-biased solver. Results are compared with experimental data for 3 turbomachinery configurations: the ntua high subsonic annular cascade, the nasa_37 rotor, and the rwth 1½ stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularly for flows with large separation, while being only 30% more expensive than the k – ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


Sign in / Sign up

Export Citation Format

Share Document