Preparing for robotic and human exploration missions which incorporate in-situ resource utilization

Author(s):  
Gerald Sanders ◽  
Joseph Trevathan ◽  
Todd Peters ◽  
R. Baird ◽  
William Larson ◽  
...  
Author(s):  
D. Rapp ◽  
J. Andringa ◽  
R. Easter ◽  
J.H. Smith ◽  
T.J. Wilson ◽  
...  

Author(s):  
Marko Green ◽  
Teresa McBryan ◽  
Darwin Mick ◽  
David Nelson ◽  
Hamid Marvi

Excavation of regolith is the enabling process for many of the in-situ resource utilization (ISRU) efforts that are being considered to aid in the human exploration of the moon and Mars. Most proposed planetary excavation systems are integrated with a wheeled vehicle, but none yet have used a screw-propelled vehicle which can significantly enhance the excavation performance. Therefore, CASPER, a novel screw-propelled excavation rover is developed and analyzed to determine its effectiveness as a planetary excavator. The excavation rate, power, velocity, cost of transport, and a new parameter, excavation transport rate, are analyzed for various configurations of the vehicle through mobility and excavation tests performed in silica sand. The optimal configuration yielded a 30 kg/hr excavation rate and 10.2 m/min traverse rate with an overall system mass of 3.4 kg and power draw of less than 30 W. These results indicate that this architecture shows promise as a planetary excavation because it provides significant excavation capability with low mass and power requirements. Corresponding author(s) Email:   [email protected]  


1997 ◽  
Author(s):  
Robert Zubrin ◽  
Mitchell Clapp ◽  
Tom Meyer ◽  
Robert Zubrin ◽  
Mitchell Clapp ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Alexis P. Rodriguez ◽  
Kenneth L. Tanaka ◽  
Ali M. Bramson ◽  
Gregory J. Leonard ◽  
Victor R. Baker ◽  
...  

AbstractThe clockwise spiral of troughs marking the Martian north polar plateau forms one of the planet’s youngest megastructures. One popular hypothesis posits that the spiral pattern resulted as troughs underwent poleward migration. Here, we show that the troughs are extensively segmented into enclosed depressions (or cells). Many cell interiors display concentric layers that connect pole- and equator-facing slopes, demonstrating in-situ trough erosion. The segmentation patterns indicate a history of gradual trough growth transversely to katabatic wind directions, whereby increases in trough intersections generated their spiral arrangement. The erosional event recorded in the truncated strata and trough segmentation may have supplied up to ~25% of the volume of the mid-latitude icy mantles. Topographically subtle undulations transition into troughs and have distributions that mimic and extend the troughs’ spiraling pattern, indicating that they probably represent buried trough sections. The retention of the spiral pattern in surface and subsurface troughs is consistent with the megastructure’s stabilization before its partial burial. A previously suggested warm paleoclimatic spike indicates that the erosion could have occurred as recently as ~50 Ka. Hence, if the removed ice was redeposited to form the mid-latitude mantles, they could provide a valuable source of near-surface, clean ice for future human exploration.


Author(s):  
Robert P. Mueller ◽  
Ivan I. Townsend, III ◽  
James G. Mantovani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document