power draw
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Sreenath Gupta

Abstract Due to several recent developments in lasers and optics, laser igniters can now be designed to be (i) compact so as to have the same footprint as a standard spark plug, (ii) have low power draw, usually less than 50 Watts, and (iii) have vibration and temperature resistance at levels typical of reciprocating engines. Primary advantages of these laser igniters remain (i) extension of lean or dilution limits for ignition of combustible mixtures, and (ii) improved ignition at higher pressures. Recently, tests performed in a 350 kW 6-cylinder stationary natural gas reciprocating engine retrofitted with these igniters showed an extension of the operational envelope to yield efficiency improvements of the order of 2.6% points while being compliant with the mandated emission regulations. Even though laser igniters offer promise, fouling of the final optical element that introduces the laser into the combustion chamber is of concern. After performing a thorough literature search, a test plan was devised to evaluate various fouling mitigation strategies. The final approach that was used is a combination of three strategies and helped sustain an optical transmissivity exceeding 98% even after 1500 hrs. of continuous engine operation at 2400 rpm. Based on the observed trend in transmissivity, it now appears that laser igniters can last up to 6000 hrs. of continuous engine operation in a stationary engine running at 1800 rpm.


2021 ◽  
Vol 16 (6) ◽  
pp. 066019
Author(s):  
Shane Kyi Hla Win ◽  
Luke Soe Thura Win ◽  
Danial Sufiyan ◽  
Shaohui Foong

Abstract The monocopter is a type of micro aerial vehicle largely inspired from the flight of botanical samaras (Acer palmatum). A large section of its fuselage forms the single wing where all its useful aerodynamic forces are generated, making it achieve a highly efficient mode of flight. However, compared to a multi-rotor of similar weight, monocopters can be large and cumbersome for transport, mainly due to their large and rigid wing structure. In this work, a monocopter with a foldable, semi-rigid wing is proposed and its resulting flight performance is studied. The wing is non-rigid when not in flight and relies on centrifugal forces to become straightened during flight. The wing construction uses a special technique for its lightweight and semi-rigid design, and together with a purpose-designed autopilot board, the entire craft can be folded into a compact pocketable form factor, decreasing its footprint by 69%. Furthermore, the proposed craft accomplishes a controllable flight in 5 degrees of freedom by using only one thrust unit. It achieves altitude control by regulating the force generated from the thrust unit throughout multiple rotations. Lateral control is achieved by pulsing the thrust unit at specific instances during each cycle of rotation. A closed-loop feedback control is achieved using a motion-captured camera system, where a hybrid proportional stabilizer controller and proportional-integral position controller are applied. Waypoint tracking, trajectory tracking and flight time tests were performed and analyzed. Overall, the vehicle weighs 69 g, achieves a maximum lateral speed of about 2.37 m s−1, an average power draw of 9.78 W and a flight time of 16 min with its semi-rigid wing.


2021 ◽  
Author(s):  
Sven Kohler ◽  
Lukas Wenzel ◽  
Max Plauth ◽  
Pawel Boning ◽  
Philipp Gampe ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Chris May ◽  
Jordan Mizerak ◽  
David Earley ◽  
Bernard Malouin

Abstract As processors continually seek greater computational output, the traditional single die processor configuration is giving way to emerging multi-die processor assemblies. As a result, dies of varying powers are spatially distributed in processor packages, causing local areas of high heat density and non-uniform temperature patterns. If not properly addressed, local hot spots may limit the total device operating power, increase leakage current to lower processor efficiency, and accelerate thermal induced semiconductor deterioration to reduce device lifetime. In this article, a modular microconvective heat sink (M2HS) is developed as a high effectiveness, high flexibility cooling solution for multi-die assemblies. Microconvective cooling, featuring optimized single-phase impingement cooling and effluent fluid flow control, provides high power density heat removal from localized heat flux zones on semiconductor dies. An AMD Threadripper 3960X is chosen as a multi-die test vehicle for the M2HS to test thermal performance in a liquid cooled experimental flow loop. Experimental results in overclocked thermal stress tests are presented, achieving power draws of up to 75% higher than the nominal processor TDP. Further, compared to a recommended product pairing of the CPU serving as a baseline heat sink, the M2HS showed a 51% improvement in CPU power draw performance. When operating at nominal, non-overclocked conditions, reduced temperature operation of the CPU using M2HS solutions resulted in a CPU efficiency increase of up to 10% compared to the baseline heat sink, providing opportunities for reduced PUE in large scale data centers. The study concludes that the M2HS shows promise as a high effectiveness, implementation-friendly cooling solution for emerging multi-die processor assemblies.


Author(s):  
Marko Green ◽  
Teresa McBryan ◽  
Darwin Mick ◽  
David Nelson ◽  
Hamid Marvi

Excavation of regolith is the enabling process for many of the in-situ resource utilization (ISRU) efforts that are being considered to aid in the human exploration of the moon and Mars. Most proposed planetary excavation systems are integrated with a wheeled vehicle, but none yet have used a screw-propelled vehicle which can significantly enhance the excavation performance. Therefore, CASPER, a novel screw-propelled excavation rover is developed and analyzed to determine its effectiveness as a planetary excavator. The excavation rate, power, velocity, cost of transport, and a new parameter, excavation transport rate, are analyzed for various configurations of the vehicle through mobility and excavation tests performed in silica sand. The optimal configuration yielded a 30 kg/hr excavation rate and 10.2 m/min traverse rate with an overall system mass of 3.4 kg and power draw of less than 30 W. These results indicate that this architecture shows promise as a planetary excavation because it provides significant excavation capability with low mass and power requirements. Corresponding author(s) Email:   [email protected]  


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 916
Author(s):  
Peter Yao ◽  
Timothy Sands

In this manuscript, a method for maneuvering a spacecraft using electrically charged tethers is explored. The spacecraft’s velocity vector can be modified by interacting with Earth’s magnetic field. Through this method, a spacecraft can maintain an orbit indefinitely by reboosting without the constraint of limited propellant. The spacecraft-tether system dynamics in low Earth orbit are simulated to evaluate the effects of Lorentz force and torques on translational motion. With 500-meter tethers charged with a 1-amp current, a 100-kg spacecraft can gain 250 m of altitude in one orbit. By evaluating the combined effects of Lorenz force and the coupled effects of Lorentz torque propagation through Euler’s moment equation and Newton’s translational motion equations, the simulated spacecraft-tether system can orbit indefinitely at altitudes as low as 275 km. Through a rare evaluation of the nonlinear coupling of the six differential equations of motion, the one finding is that an electrodynamic tether can be used to maintain a spacecraft’s orbit height indefinitely for very low Earth orbits. However, the reboost maneuver is inefficient for high inclination orbits and has high electrical power requirement. To overcome greater aerodynamic drag at lower altitudes, longer tethers with higher power draw are required.


2021 ◽  
Author(s):  
Sen Huang ◽  
Jing Wang ◽  
Yangyang Fu ◽  
Wangda Zuo ◽  
Kathryn Hinkelman ◽  
...  

Net-zero energy communities (NZECs) are critical to assuring the sustainability and resilience of modernized power systems. System modeling helps overcome technical challenges in designing and operating NZECs. In this paper, we present an open-source NZEC virtual testbed in Modelica based on a real NZEC in Florida, USA. This testbed consists of two sets of models: (1) higher-fidelity physics-based models that consider the interaction between subsystems of the studied NZEC and capture fast dynamics, and (2) lower-fidelity data-driven models that require fewer resources to establish and/or run. All models are validated against measurements from this real NZEC. In addition, this testbed includes a simulation framework that streamlines the processes for simulation and thus allows the use of developed models to form a virtual testbed. To demonstrate the usage of the virtual testbed, a case study is conducted where a building-to-grid integration control is evaluated via simulation. The evaluation results suggest that the tested control significantly smooths the power draw of the studied community and does not sacrifice thermal comfort to a great extent.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Kanishk Bhadani ◽  
Gauti Asbjörnsson ◽  
Erik Hulthén ◽  
Kristoffer Hofling ◽  
Magnus Evertsson

Process optimization and improvement strategies applied in a crushing plant are coupled with the measurement of such improvements, and one of the indicators for improvements is the mass flow at different parts of the circuit. The estimation of the mass flow using conveyor belt power consumption allows for a cost-effective solution. The principle behind the estimation is that the power draw from a conveyor belt is dependent on the load on the conveyor, conveyor speed, geometrical design, and overall efficiency of the conveyor. Calibration of the power-based belt scale is carried out periodically to ensure the accuracy of the measurement. In practical implementation, certain conveyors are not directly accessible for calibration to the physical measurement as these conveyors have limited access or it is too costly to interrupt the ongoing production process. For addressing this limitation, a better strategy is needed to calibrate the efficiency of the power-based belt scale and maintain the reliability of such a system. This paper presents the application of an optimization method for a data collection system to calibrate and maintain accurate mass flow estimation. This includes calibration of variables such as the efficiency of the power-based belt scale. The optimization method uses an error minimization optimization formulation together with the mass balancing of the crushing plant to determine the efficiency of accessible and non-accessible conveyors. Furthermore, a correlation matrix is developed to monitor and detect deviations in the estimation for the mass flow. The methods are applied and discussed for operational data from a full-scale crushing plant.


2021 ◽  
pp. 27-32
Author(s):  
A. V. Kuzyakov ◽  
V. D. Zhidovetskiy

This paper considers the results of research work aimed at developing control systems to control ore grinding processes that would be compatible with the control unit VAZM-2U developed by Soyuztsvetmetavtomatika. The underlying principle concerning the unit is that grinding of ores with different mineralogical compositions is governed by the same common regularities in correlation between the physical processes that develop in grinding circuits and the defining process parameters. A grinding mill is fed with ore that has varying physical and mechanical properties, and this can lead to accumulation of material in the mill. Indicators of the probable overload condition include mill vibration level and active power draw of the mill drive motor. The point at which the overload condition has arrived is determined by analyzing active power draw and reverse vibration trends. It is demonstrated that a mill overload condition may take place in those time intervals when both the vibration level and the active power draw of the mill motor fall. In this case the VAZM-2U unit calculates a correction command for the ore flow rate regulator, and this way the overload condition is overcome while the ore feed rate returns to the initial value. The VAZM-2U unit can also help reach the maximum output of the overflow product from a spiral classifier avoiding overgrinding, with the finest material being monitored. The unit can also determine the underflow flow rate in the spiral classifier while adjusting this parameter within a given range of allowable values. The underflow flow rate is estimated with the help of an adaptive mathematical model, which can be utilized in closed-loop grinding circuits that include classifiers. The ore grinding control algorithms implemented in the VAZM-2U unit can be modified to be applicable for milling and flotation control.


2021 ◽  
pp. 38-42
Author(s):  
S. S. Khaymovskiy

This paper considers pre-requisite conditions for developing grinding mill control systems and describes the main problems of control and existing constraints. The author selected a set of grinding equipment that consists of autogenous grinding mills and ball mills. The paper considers the selected mill types as control objects. It is shown that there exists a good correlation between the mill charge and its acoustic and vibration noise. The paper examines the relationship between the level of vibroacoustic noise and the mill motor power draw and defines what can be considered an extreme dependence, as well as the conditions in which a stable operation of the automatic system can be maintained excluding the mill overload mode. The paper specifies what hardware and software means would be necessary to implement such system and describes the mill charge analyzer VAZM-1M developed by Soyuztsvetmetavtomatika that was selected for this application. The author looks at certain downsides typical of the conventional control scheme when the head mill feed rate changes as the mill motor power draw changes without allowing for changing physical and mechanical properties of the ore material. The author also considers the capability of the VAZM-1M analyzer in terms of mill load estimation accuracy. This laid the basis for developing mill protection and optimization algorithms for the AG and Ball Mill comminution circuit. The paper features a block diagram of the control algorithm and its brief description. The algorithm consists of blocks, which are responsible for the following actions: they receive key process parameters from the process control system database, check them for validity, perform initial processing and filtering; after that they analyze the trends of the measured parameters and analyze if an overload condition is probable. As decided by the mill operator, the ore flow rate can be adjusted. The paper describes a case study of running an AG mill control system on the basis of the above described algorithm and using the VAZM-1M analyzer. It is noted that this algorithm can be implemented both as an adviser for the operator and for automatic control of the mill when running in overload mode.


Sign in / Sign up

Export Citation Format

Share Document