Aircraft Loads Characteristics Determined by System Identification and Proper Orthogonal Decomposition of CFD Simulations

Author(s):  
Chad Lillian ◽  
Scott Morton ◽  
David McDaniel
Author(s):  
G. Panzini ◽  
E. Sciubba ◽  
A. Zoli-Porroni

This paper discusses the optimization of a 2D rotor profile attained via a novel inverse-design approach that uses the entropy generation rate as the objective function. A fundamental methodological novelty of the proposed procedure is that it does not require the generation of the fluid-dynamic fields at each iteration step of the optimisation, because the objective function is computed by a functional extrapolation based on the Proper Orthogonal Decomposition (POD) method. With this new method, the (often excessively taxing) computational cost for repeated numerical CFD simulations of incrementally different geometries is substantially decreased by reducing much of it to easy-to-perform matrix-multiplications: CFD simulations are used only to calculate the basis of the POD interpolation and to validate (i.e., extend) the results. As the accuracy of a POD expansion critically depends on the allowable number of CFD simulations, our methodology is still rather computationally intensive: but, as successfully demonstrated in the paper for an airfoil profile design problem, the idea that, given a certain number of necessary initial CFD simulations, additional full simulations are performed only in the “right direction” indicated by the gradient of the objective function in the solution space leads to a successful strategy, and substantially decreases the computational intensity of the solution. This “economy” with respect to other classical “optimization” methods is basically due to the reduction of the complete CFD simulations needed for the generation of the fluid-dynamic fields on which the objective function is calculated.


Author(s):  
Zhihang Song ◽  
Bruce T. Murray ◽  
Bahgat Sammakia

Real-time analysis of the transient temperature distribution and flow field in a data center is not possible using well-resolved computational fluid dynamics (CFD) simulations. Reduced order models must be used to predict the optimum operating and control conditions to achieve better energy-efficiency. Here, the proper orthogonal decomposition (POD) method is used to model transient behavior of a simple hot aisle/cold aisle data center configuration. Verified CFD simulation results were used to generate snapshots for building a reduced order POD model corresponding to transient variation of the computer room air conditioner (CRAC) operating conditions. Good agreement is achieved between the CFD and reduced order model predictions for the evolving flow structure over a range of CRAC supply operating conditions. Once constructed, the computational time required to obtain the POD results for the transient response is considerably reduced compared to the CFD simulations. The advantages and disadvantages of the POD method for this type of transient behavior are discussed, and recommendations are made on using this type of compact modeling approach to develop a real-time predictive tool for data center design and control to enhance energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document