fluid dynamic
Recently Published Documents


TOTAL DOCUMENTS

4872
(FIVE YEARS 1200)

H-INDEX

71
(FIVE YEARS 9)

Author(s):  
Christopher Blum ◽  
Sascha Groß-Hardt ◽  
Ulrich Steinseifer ◽  
Michael Neidlin

Abstract Purpose Thrombosis ranks among the major complications in blood-carrying medical devices and a better understanding to influence the design related contribution to thrombosis is desirable. Over the past years many computational models of thrombosis have been developed. However, numerically cheap models able to predict localized thrombus risk in complex geometries are still lacking. The aim of the study was to develop and test a computationally efficient model for thrombus risk prediction in rotary blood pumps. Methods We used a two-stage approach to calculate thrombus risk. The first stage involves the computation of velocity and pressure fields by computational fluid dynamic simulations. At the second stage, platelet activation by mechanical and chemical stimuli was determined through species transport with an Eulerian approach. The model was compared with existing clinical data on thrombus deposition within the HeartMate II. Furthermore, an operating point and model parameter sensitivity analysis was performed. Results Our model shows good correlation (R2 > 0.93) with clinical data and identifies the bearing and outlet stator region of the HeartMate II as the location most prone to thrombus formation. The calculation of thrombus risk requires an additional 10–20 core hours of computation time. Conclusion The concentration of activated platelets can be used as a surrogate and computationally low-cost marker to determine potential risk regions of thrombus deposition in a blood pump. Relative comparisons of thrombus risk are possible even considering the intrinsic uncertainty in model parameters and operating conditions.


2022 ◽  
Vol 3 ◽  
Author(s):  
Rhoda Au ◽  
Vijaya B. Kolachalama ◽  
Ioannis C. H. Paschalidis

“Digital biomarker” is a term broadly and indiscriminately applied and often limited in its conceptualization to mimic well-established biomarkers as defined and approved by regulatory agencies such as the United States Food and Drug Administration (FDA). There is a practical urgency to revisit the definition of a digital biomarker and expand it beyond current methods of identification and validation. Restricting the promise of digital technologies within the realm of currently defined biomarkers creates a missed opportunity. A whole new field of prognostic and early diagnostic digital biomarkers driven by data science and artificial intelligence can break the current cycle of high healthcare costs and low health quality that is being driven by today's chronic disease detection and treatment approaches. This new class of digital biomarkers will be dynamic and require developing new FDA approval pathways and next-generation gold standards.


Author(s):  
Haiqiang Jiang ◽  
Fujun Niu ◽  
Wangtao Jiang ◽  
Li Cheng ◽  
Yongdong Li ◽  
...  

Abstract piston action describes the phenomenon that air at the train nose is pushed forward by the increased pressure and air at the train rear is drawn forward by the decreased pressure when a train passes through a tunnel. The changes of pressure can affect the thermal environment inside the tunnel, and further cause frost damage. In this paper, a fluid-thermal-solid coupled numerical model considering piston action is developed. A high-speed railway tunnel in the northeast of China is taken as an example to explore the temperature distribution laws with computational fluid dynamic (CFD). Afterwards, the effects of air temperature and train velocity on temperature distribution are analyzed. The results show that the piston action can enhance the heat transfer between cold air outside the tunnel and tunnel structure, and can cause more serious frost damage especially at the entrance and exit. The temperature distribution is characterized by three zones, including disturbed zones at two sides of tunnel and undisturbed zone at tunnel middle. The freezing length is closely related to air temperature and train velocity. And also, the lengths are different at vault and rail of tunnel portal, which indicates that the anti-freezing measure should be different at these positions considering the cost. This paper can provide some reference for determining the anti-freezing fortified length of tunnels in cold regions.


2022 ◽  
Vol 14 (2) ◽  
pp. 688
Author(s):  
Roberta Cocci Grifoni ◽  
Giorgio Caprari ◽  
Graziano Enzo Marchesani

This paper presents a new methodological approach for analysing the impacts of climate change on the urban habitat and improving the quality of life for citizens. The study falls within the diagnostic phase of the Climate Change and Urban Health Resilience (CCUHRE) research project applied to the rationalist neighbourhood of Monticelli, a suburb of Ascoli Piceno (Italy). The methodological approach tests innovative and multidisciplinary cognitive tools to quantify the impacts of climate change and create refined risk maps combining remote sensing, spatial data, satellite images, and thermal fluid dynamic (CFD) simulations. These tools created an atlas of green areas and surfaces using scientific indexes that describe the relationship between the urban form and heat and between the type of ground and materials. The information yielded by geoprocessing will allow critical aspects in the context to be addressed with site-specific strategies. In fact, through downscaling, it is possible to analyse the thermal fluid dynamics characteristics of the most significant urban areas and identify the related weather/climate characteristics, perceptual scenarios, and thermal stressed regions. The results have provided a dataset that defines the degree of vulnerability of the neighbourhood and identifies the areas exposed to thermal risk.


Author(s):  
Hao Xu ◽  
Bin Meng ◽  
Chenhang Zhu ◽  
Sheng Li ◽  
Jian Ruan

The leakage of the pilot stage of the 2D valve mainly depends on the size of its initial opening. According to the Routh criterion, the pilot stage of the two-dimensional magnetically levitated servo-proportional valve (2D-MSP valve) needs to be designed to have certain positive values to increase the damping ratio to improve valve stability, which leads to the leakage flow representing a non-negligible power loss. In order to reduce leakage flow and achieve goal of energy saving, this paper presents a novel resonance stability criterion by considering nonlinear characteristics of the fluid dynamic system. First, the 2D-MSP valve is regarded as a three-way valve-controlled differential cylinder system. Based on the frequency response of the resonance state, the energy conservation method is used to solve the flow “backfilling” area, the motion equation of the cylinder piston (valve spool displacement) and the pressure waveform of the sensing chamber under different opening and pressure amplitude ratio. Then, the analytical expression of the resonance peak amplitude is obtained and the resonance stability criterion is deduced. The result is compared with the Routh stability criterion, which illustrates that the positive openings of the pilot stage can be reduced to one-third of the original value. The prototype valve is then designed and manufactured based on the resonance stability criterion. The dynamic and static characteristics under different system pressures are measured. Experimental results show that the prototype valve is an over-damped system without any overshoot, which has excellent working stability, and its static and dynamic performance can meet the demands of the industry servo-proportional control system. The research work validates the effectiveness of the proposed resonance stability criterion.


2022 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
Jun Yang ◽  
Dakui Feng ◽  
Liwei Liu ◽  
Xianzhou Wang ◽  
Chaobang Yao

This study presents a numerical research on the open-water performance of a pumpjet propulsor at different scales. Simulations were performed by an in-house viscous CFD (Computational Fluid Dynamic) code. The Reynolds-averaged Navier–Stokes (RANS) method with SST k-w turbulence model is employed. A dynamic overset grid is used to treat the relative motion between the rotor and other parts. The numerical results are compared with the model test data and they agree well. Comparisons for the open-water performance between the pumpjet propulsors with two scales are carried out. The results indicate that the total thrust coefficient of the large-scale pumpjet propulsor is greater than that of the small-scale one while the torque coefficient is smaller. Therefore, the efficiency of the large-scale pumpjet propulsor is about 8~10% higher than that of the small-scale pumpjet propulsor. The open-water performance of the rotor, pre-swirl stator and duct is obtained separately to estimate the discrepancies on the thrust and torque coefficients between different scales. To analyze the scale effect from different parts, the research on flow field and pressure distribution are carried out. The variation of total thrust and torque coefficient comes mainly from the rotor, which is caused by the flow field, influenced by the duct and stator.


2022 ◽  
Author(s):  
Jisoo Shin ◽  
Donghwan Kim ◽  
Yousang Son ◽  
Sungwook Park

Abstract In order to improve the performance of the gasoline direct injection engine system, it is fundamentally important to reduce the cylinder-to-cylinder variation which affected by the intake manifold geometry. Furthermore, the early tumble development which influences the characteristics of the mixture as followed by the atomization and evaporation of the fuel, also greatly affects engine performance. Thus, in this study, the cylinder-to-cylinder variation in volumetric efficiency and tumble for two different type of intake manifold (curved type and straight type) was investigated using computational fluid dynamic program, CONVERE v2.4. And influence of the intake manifold curve radius to the early flow intensity and tumble development was analyzed. As a result, it was advantageous for cylinder-to-cylinder variation in the straight intake manifold compared to the curved intake manifold. When the intake manifold curve radius was increased in the straight intake manifold, it was effective in strengthening the early flow and tumble intensity. At 3000 rpm, the distance from the intake manifold inlet to the port also had an effect. Therefore, it is possible to improve the intake manifold performance by increasing the intake manifold curve radius and adapting turbocharging at engine speeds above 3000 rpm.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 399
Author(s):  
Guoshuai Ju ◽  
Tie Yan ◽  
Xiaofeng Sun

In the drilling of horizontal wells, the drill cuttings tend to settle down on the low side of the annulus due to gravity and form a stationary bed, which results in hole cleaning problems. In this paper, a novel type of drillpipe with an elliptical shape was proposed to alleviate inadequate hole cleaning during the drilling of horizontal wells. A three-dimensional computational fluid dynamic (CFD) Eulerian-Eulerian approach with the Realizable k-ɛ turbulence model was developed to predict the solid–liquid two-phase flow in the annular space. Numerical examples were given to investigate the influence of different parameters on cuttings’ transport behavior, and the elliptical drillpipe was compared with the circular drillpipe. The annular cuttings concentration, annular pressure drop, and hole cleaning efficiency were evaluated. The numerical results clarify the potential of the elliptical drillpipe to enhance the hole cleaning efficiency without significantly increasing the annular pressure drop. Due to the swirl flow and secondary flow caused by the rotation of the curvature wall, the swaying phenomenon of drill cuttings’ distribution along the rotation direction of drillpipe was observed and enhanced the cuttings transport ability. Using the elliptical drillpipe as a joint-type tool can improve hole cleaning performance. Under the optimum conditions applied in this study, the hole cleaning efficiency increased by nearly 18%.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 379
Author(s):  
Xiang Zhang ◽  
Yinghou Jiao ◽  
Xiuquan Qu ◽  
Guanghe Huo ◽  
Zhiqian Zhao

The seal is designed to reduce leakage and improve the efficiency of gas turbine machines, and is an important technology that needs to be studied in gas turbine design. A series of seals were proposed to try to achieve this goal. However, due to the complex fluid dynamic performance of the seal-rotor system, the seal structure can obtain both the best leakage performance and best rotordynamic performance. This paper presents a detailed flow analysis of the hole diaphragm labyrinth seal (HDLS) at several whirl frequencies and several rotation speeds. The pressure drop, velocity, turbulence kinetic energy and leakage performance of the HDLS were discussed by simulations. An interesting exponential–type relationship between rotation speeds and leakage flow at different whirl frequencies was observed by curve fitting technology. A reverse flow rate was proposed to describe such an unusual phenomenon. Such a relationship can be used to further establish the leakage model of the HDLS and other similar seals.


Sign in / Sign up

Export Citation Format

Share Document