dynamical modelling
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 84 (1) ◽  
Author(s):  
R. S. J. Sparks ◽  
J. D. Blundy ◽  
K. V. Cashman ◽  
M. Jackson ◽  
A. Rust ◽  
...  

AbstractOver the last 20 years, new concepts have emerged into understanding the processes that lead to build up to large silicic explosive eruptions based on integration of geophysical, geochemical, petrological, geochronological and dynamical modelling. Silicic melts are generated within magma systems extending throughout the crust by segregation from mushy zones. Segregated melt layers become unstable and can assemble into ephemeral upper crustal magma chambers rapidly prior to eruption. In the next 10 years, we can expect major advances in dynamical models as well as in analytical and geophysical methods, which need to be underpinned in field research.


Author(s):  
Qi Yu ◽  
Yuanlong Wang ◽  
Daoyi Dong ◽  
Ian R. Petersen ◽  
Guo-Yong Xiang

2020 ◽  
Vol 643 ◽  
pp. A135 ◽  
Author(s):  
G. Chirivì ◽  
A. Yıldırım ◽  
S. H. Suyu ◽  
A. Halkola

The dynamical modelling of integral field unit (IFU) stellar kinematics is a powerful tool to unveil the dynamical structure and mass build-up of galaxies in the local Universe, while gravitational lensing is nature’s cosmic telescope to explore the properties of galaxies beyond the local Universe. We present a new approach, which unifies dynamical modelling of galaxies with the magnification power of strong gravitational lensing, to reconstruct the structural and dynamical properties of high-redshift galaxies. By means of axisymmetric Jeans modelling, we create a dynamical model of the source galaxy, assuming a surface brightness and surface mass density profile. We then predict how the source’s surface brightness and kinematics would look when lensed by the foreground mass distribution and compare with the mock observed arcs of strong gravitational lensing systems. For demonstration purposes, we created and also analysed mock data of the strong lensing system RX J1131−1231. By modelling both the lens and source, we recover the dynamical mass within the effective radius of strongly lensed high-redshift sources within 5% uncertainty, and we improve the constraints on the lens mass parameters by up to 50%. This machinery is particularly well-suited for future observations from large segmented-mirror telescopes, such as the James Webb Space Telescope, which will yield high sensitivity and angular-resolution IFU data for studies on distant and faint galaxies.


2020 ◽  
Author(s):  
Martina Kováčová ◽  
Roman Nagy ◽  
Leonard Kornoš ◽  
Juraj Tóth

<p>Apollo-type asteroids Bennu and Ryugu are currently targets of sample-return missions. The goal of OSIRIS-REx mission (NASA) is to explore asteroid Bennu and Ryugu is being probed by JAXA’s Hayabusa2 mission. Observations of Bennu in January 2019 revealed ejecting material in the close proximity of the asteroid. Here we peresent our results of studying orbital evolution of potential meteoroid streams along the orbits of Bennu and Ryugu by integrating over 5000 test particles each for 1000 yr. We searched for their approaches to the Earth and we were also interested in evolution of their Earth MOIDs in order to estimate possible activity of potential meteor showers. Our results indicate possible observability from the Earth approximately for next 400 - 500 yr in both cases. Theoretical radiants for both asteroids and their potential meteor showers were also calculated.</p>


Sign in / Sign up

Export Citation Format

Share Document