scholarly journals On γ-Clean Rings

2017 ◽  
Vol 5 (3) ◽  
pp. 285
Author(s):  
Shaimaa S. Esa ◽  
Hewa S. Faris

In this paper we introduce the concept of -clean ring and we discuss some relations between - clean ring and other rings with explaining by some examples. Also, we give some basic properties of it.

2015 ◽  
Vol 14 (06) ◽  
pp. 1550094 ◽  
Author(s):  
Warren Wm. McGovern ◽  
Shan Raja ◽  
Alden Sharp

In [A. J. Diesl, Classes of strongly clean rings, Ph.D. Dissertation, University of California, Berkely (2006); Nil clean rings, J. Algebra383 (2013) 197–211], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short paper, we characterize nil clean commutative group rings.


2017 ◽  
Vol 15 (1) ◽  
pp. 420-426 ◽  
Author(s):  
Ali H. Handam ◽  
Hani A. Khashan
Keyword(s):  

Abstract An element in a ring R with identity is said to be strongly nil clean if it is the sum of an idempotent and a nilpotent that commute, R is said to be strongly nil clean if every element of R is strongly nil clean. Let C(R) be the center of a ring R and g(x) be a fixed polynomial in C(R)[x]. Then R is said to be strongly g(x)-nil clean if every element in R is a sum of a nilpotent and a root of g(x) that commute. In this paper, we give some relations between strongly nil clean rings and strongly g(x)-nil clean rings. Various basic properties of strongly g(x) -nil cleans are proved and many examples are given.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650148 ◽  
Author(s):  
Simion Breaz ◽  
Peter Danchev ◽  
Yiqiang Zhou

Generalizing the notion of nil-cleanness from [A. J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197–211], in parallel to [P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra 425 (2015) 410–422], we define the concept of weak nil-cleanness for an arbitrary ring. Its comprehensive study in different ways is provided as well. A decomposition theorem of a weakly nil-clean ring is obtained. It is completely characterized when an abelian ring is weakly nil-clean. It is also completely determined when a matrix ring over a division ring is weakly nil-clean.


2008 ◽  
Vol 50 (3) ◽  
pp. 509-522 ◽  
Author(s):  
TSIU-KWEN LEE ◽  
YIQIANG ZHOU

AbstractIt is well known that a ring R is an exchange ring iff, for any a ∈ R, a−e ∈ (a2−a)R for some e2 = e ∈ R iff, for any a ∈ R, a−e ∈ R(a2−a) for some e2 = e ∈ R. The paper is devoted to a study of the rings R satisfying the condition that for each a ∈ R, a−e ∈ (a2−a)R for a unique e2 = e ∈ R. This condition is not left–right symmetric. The uniquely clean rings discussed in (W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow Math. J. 46 (2004), 227–236) satisfy this condition. These rings are characterized as the semi-boolean rings with a restricted commutativity for idempotents, where a ring R is semi-boolean iff R/J(R) is boolean and idempotents lift modulo J(R) (or equivalently, R is an exchange ring for which any non-zero idempotent is not the sum of two units). Various basic properties of these rings are developed, and a number of illustrative examples are given.


Author(s):  
Yinchun Qu ◽  
Junchao Wei

Abstract In this note, we first show that a ring R is Abel if and only if the 2 × 2 upper triangular matrix ring over R is quasi-normal. Next, we give the notion of super-strongly clean ring (that is, an Abel clean ring), which is inbetween uniquely clean rings and strongly clean rings. Some characterizations of super-strongly clean rings are given.


2021 ◽  
Vol 28 (03) ◽  
pp. 367-378
Author(s):  
Jian Cui ◽  
Guoli Xia ◽  
Yiqiang Zhou

A [Formula: see text]-ring [Formula: see text] is called a nil [Formula: see text]-clean ring if every element of [Formula: see text] is a sum of a projection and a nilpotent. Nil [Formula: see text]-clean rings are the [Formula: see text]-version of nil-clean rings introduced by Diesl. This paper is about the nil [Formula: see text]-clean property of rings with emphasis on matrix rings. We show that a [Formula: see text]-ring [Formula: see text] is nil [Formula: see text]-clean if and only if [Formula: see text] is nil and [Formula: see text] is nil [Formula: see text]-clean. For a 2-primal [Formula: see text]-ring [Formula: see text], with the induced involution given by[Formula: see text], the nil [Formula: see text]-clean property of [Formula: see text] is completely reduced to that of [Formula: see text]. Consequently, [Formula: see text] is not a nil [Formula: see text]-clean ring for [Formula: see text], and [Formula: see text] is a nil [Formula: see text]-clean ring if and only if [Formula: see text] is nil, [Formula: see text]is a Boolean ring and [Formula: see text] for all [Formula: see text].


2017 ◽  
Vol 16 (04) ◽  
pp. 1750073 ◽  
Author(s):  
Jerzy Matczuk

Question 3 of [3] asks whether the matrix ring [Formula: see text] is nil clean, for any nil clean ring [Formula: see text]. It is shown that, positive answer to this question is equivalent to positive solution for Köthe’s problem in the class of algebras over the field [Formula: see text]. Other equivalent problems are also discussed. The classes of conjugate clean and conjugate nil clean rings, which lie strictly between uniquely (nil) clean and (nil) clean rings are introduced and investigated.


2004 ◽  
Vol 70 (2) ◽  
pp. 279-282 ◽  
Author(s):  
Zhou Wang ◽  
Jianlong Chen

A ring is called strongly clean if every element is the sum of an idempotent and a unit which commute. In 1999 Nicholson asked whether every semiperfect ring is strongly clean and whether the matrix ring of a strongly clean ring is strongly clean. In this paper, we prove that if R = {m/n ∈ ℚ: n is odd}, then M2(R) is a semiperfect ring but not strongly clean. Thus, we give negative answers to both questions. It is also proved that every upper triangular matrix ring over the ring R is strongly clean.


2011 ◽  
Vol 10 (06) ◽  
pp. 1363-1370 ◽  
Author(s):  
CHUNNA LI ◽  
YIQIANG ZHOU

A *-ring R is called a *-clean ring if every element of R is the sum of a unit and a projection, and R is called a strongly *-clean ring if every element of R is the sum of a unit and a projection that commute with each other. These concepts were introduced and discussed recently by [L. Vaš, *-Clean rings; some clean and almost clean Baer *-rings and von Neumann algebras, J. Algebra324 (2010) 3388–3400]. Here it is proved that a *-ring R is strongly *-clean if and only if R is an abelian, *-clean ring if and only if R is a clean ring such that every idempotent is a projection. As consequences, various examples of strongly *-clean rings are constructed and, in particular, two questions raised in [L. Vaš, *-Clean rings; some clean and almost clean Baer *-rings and von Neumann algebras, J. Algebra324 (2010) 3388–3400] are answered.


2013 ◽  
Vol 96 (2) ◽  
pp. 258-274
Author(s):  
V. A. HIREMATH ◽  
SHARAD HEGDE

AbstractIn this article, we introduce the notion of the uniquely $I$-clean ring and show that, if $R$ is a ring and $I$ is an ideal of $R$ then $R$ is uniquely $I$-clean if and only if ($R/ I$ is Boolean and idempotents lift uniquely modulo $I$) if and only if (for each $a\in R$ there exists a central idempotent $e\in R$ such that $e- a\in I$ and $I$ is idempotent-free). We examine when ideal extension is uniquely clean relative to an ideal. Also we obtain conditions on a ring $R$ and an ideal $I$ of $R$ under which uniquely $I$-clean rings coincide with uniquely clean rings. Further we prove that a ring $R$ is uniquely nil-clean if and only if ($N(R)$ is an ideal of $R$ and $R$ is uniquely $N(R)$-clean) if and only if $R$ is both uniquely clean and nil-clean if and only if ($R$ is an abelian exchange ring with $J(R)$ nil and every quasiregular element is uniquely clean). We also show that $R$ is a uniquely clean ring such that every prime ideal of $R$ is maximal if and only if $R$ is uniquely nil-clean ring and $N(R)= {\mathrm{Nil} }_{\ast } (R)$.


Sign in / Sign up

Export Citation Format

Share Document