Kinetic study of Heavy Metal ion removal through Hydrogels

2021 ◽  
Vol 25 (9) ◽  
pp. 127-132
Author(s):  
Anamica . ◽  
P.P. Pande

The crosslinkers allyl mannitol (AM), allyl sorbitol (AS) and allyl pentaerythritol (AP) have been used for the synthesis of crosslinked polymeric gels of acrylic acid. These gels were used for the removal of heavy metal ions from water. The quantitative removal of metal ions was determined with the support of UV-visible absorption spectroscopy. The results show that the fully dried hydrogel samples have better adsorption potential for heavy metal ion removal. The kinetics of metal ion adsorption during the treatment of wastewater has also been studied. It was found that under certain conditions, the kinetics involved may be of pseudo first order while under different set of conditions, the kinetics involved is of pseudo second order.

2008 ◽  
Vol 569 ◽  
pp. 285-288 ◽  
Author(s):  
Hyun Jong Lee ◽  
Beom Goo Lee ◽  
Dae Yong Shin ◽  
Heon Park

In this study lignocellulosic fibers, such as kenaf bast, kenaf core, sugar cane bagasse, cotton, coconut coir, and spruce, which are environment friendly natural materials, were tested for their ability to remove copper, nickel and zinc ions from aqueous solutions. The fibers were analyzed for Klason lignin content, water sorption capacity and dry volume. The fiber with the highest level of heavy metal removal in the separate and mixed solution was kenaf bast.. In the mixed solution kenaf bast, sugar cane bagasse and cotton removed more copper and nickel ion than in the separate solution, and the amounts of removed heavy metal ions were changed in some lignocellulosic fibers, compared to those of the separate solution. In the mixed solution heavy metal ions may compete with one another for sorption sites on the surface of lignocellusic fiber. In kenaf bast to remove heavy metal ions most, Klason lignin content was the second lowest, and water sorption and dry volume were the lowest in all tested lignocellulosic fibers. It showed that removal of heavy metal ions does not correlate with any chemical and physical factors, but may be affected by the cell wall structure of lignocellulosic fibers and how many free phenolic groups in lignin, which are considered as the heavy metal ion binding site, are exposed on the surface of fibers. Cotton, with about 1% Klason lignin, was very low in heavy metal ion removal, while all other fibers containing greater than about 10% lignin did remove heavy metal ions. It showed that even the lignin content of lignocellulosic fibers does not correlate with heavy metal ion removal but lignin does play a role in heavy metal ion removal.


2017 ◽  
Vol 53 ◽  
pp. 132-140 ◽  
Author(s):  
Fang Xu ◽  
Ting-Ting Zhu ◽  
Qing-Quan Rao ◽  
Sheng-Wen Shui ◽  
Wen-Wei Li ◽  
...  

2020 ◽  
Vol 33 ◽  
pp. 101038 ◽  
Author(s):  
Shweta Wadhawan ◽  
Ayushi Jain ◽  
Jasamrit Nayyar ◽  
Surinder Kumar Mehta

2019 ◽  
Vol 232 ◽  
pp. 200-204 ◽  
Author(s):  
Martha Purnachander Rao ◽  
Shajahan Musthafa ◽  
Jerry J. Wu ◽  
Sambandam Anandan

2020 ◽  
Vol 156 ◽  
pp. 1160-1173 ◽  
Author(s):  
Ana L. Popovic ◽  
Jelena D. Rusmirovic ◽  
Zlate Velickovic ◽  
Zeljko Radovanovic ◽  
Mirjana Ristic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document