scholarly journals Regularized inversion of full tensor magnetic gradient data

Author(s):  
Я. Ван ◽  
Д.В. Лукьяненко ◽  
А.Г. Ягола

Рассматриваются особенности численной реализации решения трехмерной обратной задачи обращения полных тензорных магнитно-градиентных данных, которая моделируется системой двух трехмерных интегральных уравнений Фредгольма 1-го рода. Для решения этой некорректно поставленной задачи применяется алгоритм, основанный на минимизации функционала А.Н. Тихонова. В качестве метода минимизации используется метод сопряженных градиентов. Выбор параметра регуляризации осуществляется в соответствии с версией обобщенного принципа невязки, в которой учитываются ошибки округления, существенные при решении задач большой размерности. Features of numerical solution of the three-dimensional ill-posed problem devoted to the inversion of full tensor magnetic gradient data are considered. This problem is simulated by a system of two three-dimensional Fredholm integral equations of the first kind. The Tikhonov regularization is applied to solve this ill-posed problem. The conjugate gradient method is used as a minimization method. The choice of the regularization parameter is realized according to the generalized residual principle with consideration of round-off errors capable of affecting the final result of calculations significantly.

2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2016 ◽  
Vol 26 (3) ◽  
pp. 623-640 ◽  
Author(s):  
Sara Beddiaf ◽  
Laurent Autrique ◽  
Laetitia Perez ◽  
Jean-Claude Jolly

Abstract Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.


2021 ◽  
Vol 263 (5) ◽  
pp. 1029-1040
Author(s):  
Pierangelo Libianchi ◽  
Finn T. Agerkvist ◽  
Elena Shabalina

In sound field control, a set of control sources is used to match the pressure field generated by noise sources but with opposite phase to reduce the total sound pressure level in a defined area commonly referred to as dark zone. This is usually an ill-posed problem. The approach presented here employs a subspace iterative method where the number of iterations acts as the regularization parameter and controls unwanted side radiation, i.e. side lobes. More iterations lead to less regularization and more side lobes. The number of iterations is controlled by problem-specific stopping criteria. Simulations show the increase of lobing with increased number of iterations. The solutions are analysed through projections on the basis provided by the source strength modes corresponding to the right singular vector of the transfer function matrix. These projections show how higher order pressure modes (left singular vectors) become dominant with larger number of iterations. Furthermore, an active-set type method provides the constraints on the amplitude of the solution which is not possible with the conjugate gradient least square algorithm alone.


2013 ◽  
Vol 416-417 ◽  
pp. 1393-1398
Author(s):  
Chao Zhong Ma ◽  
Yong Wei Gu ◽  
Ji Fu ◽  
Yuan Lu Du ◽  
Qing Ming Gui

In a large number of measurement data processing, the ill-posed problem is widespread. For such problems, this paper introduces the solution of ill-posed problem of the unity of expression and Tikhonov regularization method, and then to re-collinearity diagnostics and metrics based on proposed based on complex collinearity diagnostics and the metric regularization method is given regularization matrix selection methods and regularization parameter determination formulas. Finally, it uses a simulation example to verify the effectiveness of the method.


2012 ◽  
Vol 476-478 ◽  
pp. 2292-2295
Author(s):  
Zhen Chen

Three identification methods, the time domain method (TDM)、the conjugate gradient method (CGM)and the pre-treatment conjugate gradient method (PCGM) are employed for moving force identification. Related research shows that the PCGM have higher identification accuracy and robust noise immunity as well as producing an acceptable solution to ill-posed cases to some extent when they are used to identify the moving force. However, the pre-treatment matrix is very important to the PCGM because it affects the identification accuracy and robust noise immunity as well as ill-posed cases to some extent. The theory study results are practical significant to selection properly pre-treatment matrix.


Sign in / Sign up

Export Citation Format

Share Document