noise sources
Recently Published Documents


TOTAL DOCUMENTS

2185
(FIVE YEARS 498)

H-INDEX

49
(FIVE YEARS 8)

2022 ◽  
Vol 166 ◽  
pp. 108447
Author(s):  
Yusun Shul ◽  
Seonbin Lim ◽  
Semin Moon ◽  
No-Cheol Park

2022 ◽  
Author(s):  
Alexander Strang ◽  
William Huffmyer ◽  
Hilary Rollins ◽  
Karen C. Abbott ◽  
Peter J. Thomas

While noise is an important factor in biology, biological processes often involve multiple noise sources, whose relative importance can be unclear. Here we develop tools that quantify the importance of noise sources in a network based on their contributions to variability in a quantity of interest. We generalize the edge importance measures proposed by Schmidt and Thomas [1] for first-order reaction networks whose steady-state variance is a linear combination of variance produced by each directed edge. We show that the same additive property extends to a general family of stochastic processes subject to a set of linearity assumptions, whether in discrete or continuous state or time. Our analysis applies to both expanding and contracting populations, as well as populations obeying a martingale (“wandering”) at long times. We show that the original Schmidt-Thomas edge importance measure is a special case of our more general measure, and is recovered when the model satisfies a conservation constraint


2022 ◽  
Author(s):  
M. Hongchul Sohn ◽  
Jasjit Deol ◽  
Julius P. A. Dewald

After stroke, paretic arm muscles are constantly exposed to abnormal neural drive from the injured brain. As such, hypertonia, broadly defined as an increase in muscle tone, is prevalent especially in distal muscles, which impairs daily function or in long-term leads to a flexed resting posture in the wrist and fingers. However, there currently is no quantitative measure that can reliably track how hypertonia is expressed on daily basis. In this study, we propose a novel time-based surface electromyography (sEMG) measure that can overcome the limitations of the coarse clinical scales often measured in functionally irrelevant context and the magnitude-based sEMG measures that suffer from signal non-stationarity. We postulated that the key to robust quantification of hypertonia is to capture the true baseline in sEMG for each measurement session, by which we can define the relative duration of activity over a short time segment continuously tracked in a sliding window fashion. We validate that the proposed measure of sEMG active duration is robust across parameter choices (e.g., sampling rate, window length, threshold criteria), robust against typical noise sources present in paretic muscles (e.g., low signal-to-noise ratio, sporadic motor unit action potentials), and reliable across measurements (e.g., sensors, trials, and days), while providing a continuum of scale over the full magnitude range for each session. Furthermore, sEMG active duration could well characterize the clinically observed differences in hypertonia expressed across different muscles and impairment levels. The proposed measure can be used for continuous and quantitative monitoring of hypertonia during activities of daily living while at home, which will allow for the study of the practical effect of pharmacological and/or physical interventions that try to combat its presence.


2022 ◽  
Vol 130 (3) ◽  
pp. 1371-1386
Author(s):  
Deng Qin ◽  
Tian Li ◽  
Honglin Wang ◽  
Jizhong Yang ◽  
Yao Jiang ◽  
...  

2022 ◽  
Vol 17 (01) ◽  
pp. P01007
Author(s):  
J. Mitchell ◽  
T. Kovachy ◽  
S. Hahn ◽  
P. Adamson ◽  
S. Chattopadhyay

Abstract We investigate and analyze site specific systematics for the MAGIS-100 atomic interferometry experiment at Fermi National Accelerator Laboratory. As atom interferometers move out of the laboratory environment passive and active mitigation for noise sources must be implemented. To inform the research and development of the experiment design, we measure ambient temperature, humidity, and vibrations of the installation site. We find that temperature fluctuations will necessitate enclosures for critical subsystems and a temperature controlled laser room for the laser system. We also measure and analyze the vibration spectrum above and below ground for the installation site. The seismic vibration effect of gravity gradient noise is also modeled using input from a low-noise seismometer at multiple locations and a mitigation scheme is studied using a stochastic simulation and characterized by a suppression factor.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 238
Author(s):  
Young-Geun Lee ◽  
Tae-Kyoung Bang ◽  
Jeong-In Lee ◽  
Jong-Hyeon Woo ◽  
Sung-Tae Jo ◽  
...  

In this study, we performed the electromagnetic and mechanical characteristic analyses of an 8-pole 12-slot interior permanent magnet synchronous motor (IPMSM). Permanent magnet synchronous motors are classified into surface permanent magnet synchronous motor and interior permanent magnet synchronous motors according to the type of rotor. The IPM type is advantageous for high-speed operation because of the structure where the permanent magnet is embedded inside the rotor, and it has the advantage of having a high output density by generating not only the magnetic torque of the permanent magnet, but also the reluctance torque. However, such a motor has more vibration/noise sources than other types, owing to changes in reluctance. The sources of motor noise/vibration can be broadly classified into electromagnetic, mechanical, and aerodynamic sources. Electromagnetic noise sources are classified into electromagnetic excitation sources, torque pulsations, and unbalanced magnetic forces (UMFs). Vibration and noise cause machine malfunctions and affect the entire system. Therefore, it is important to analyze the electromagnetic vibration source. In this study, the electromagnetic characteristics of an IPMSM were analyzed through the finite element method to derive the UMF. Vibration and noise analyses were performed by electromagnetic–mechanical coupling analysis, and vibration and noise characteristics based on electromagnetic noise sources were analyzed.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 147
Author(s):  
Gianmarco Battista ◽  
Marcello Vanali ◽  
Paolo Chiariotti ◽  
Paolo Castellini

<p class="Abstract">Characterising the aeroacoustic noise sources generated by a rotating wind turbine blade provides useful information for tackling noise reduction of this mechanical system. In this context, microphone array measurements and acoustic source mapping techniques are powerful tools for the identification of aeroacoustic noise sources. This paper discusses a series of acoustic mapping strategies that can be exploited in this kind of applications. A single-blade rotor was tested in a semi-anechoic chamber using a circular microphone array. <br />The Virtual Rotating Array (VRA) approach, which transforms the signals acquired by the physical static array into signals of virtual microphones synchronously rotating with the blade, hence ensuring noise-source stationarity, was used to enable the use of frequency domain acoustic mapping techniques. A comparison among three different acoustic mapping methods is presented: Conventional Beamforming, CLEAN-SC and Covariance Matrix Fitting based on Iterative Re-weighted Least Squares and Bayesian approach. The latter demonstrated to provide the best results for the application and made it possible a detailed characterization of the noise sources generated by the rotating blade at different operating conditions.</p>


Author(s):  
A. I. Antonov ◽  
V. I. Ledenev ◽  
I. V. Matveeva ◽  
M. A. Porozhenko

Purpose: Experimental determination of the response room function and its use to estimate the acoustic conditions in rooms with noncontinuous noise sources.Methodology/approach: The detailed parameter calculation of noncontinuous sound fields using the response room function, which is the room response to pulse excitation. The response function can be calculated by analytical or numerical methods and by experimental measurements in production conditions the energy attenuation when a constant noise source is switched off.Findings: Noncontinuous noise has a negative impact on health. The effective noise reduction is determined by the complete and accurate analysis of its energy parameters. The noncontinuous noise estimation based on equivalent levels does not meet the requirements, especially when pulsed noise sources are active. The experimental technique is proposed for the response function calculation and its use in evaluating the noise conditions in rooms with noncontinuous noise sources.Practical implications: The experimental determination of the response function to pulse excitation allows studying the acoustic processes in rooms for the formation of noise conditions when analytical methods cannot be used. The experimentally obtained response function makes it possible to solve problems of changing the noise conditions in rooms with noncontinuous noise sources.


2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Jakub Wróbel ◽  
Damian Pietrusiak

This paper deals with noise problems in industrial sites adapted for commercial training venues. The room acoustics of such an object were analyzed in the scope of the reverberation time and potential acoustic adaptation measures are indicated. Identification and classification of noise sources in training facilities and gyms was carried out based on the acoustic measurements. The influence of rubber padding on impact and noise reduction was investigated in the case of chosen noise-intensive exercise activities performed in a previously described acoustic environment. Potential noise reduction measures are proposed in the form of excitation reduction, vibration isolation, and room acoustics adaptation.


Sign in / Sign up

Export Citation Format

Share Document