Vapour Pressure Isotope Effect on Evaporation from Pure Organic Phases - a PIMD Approach

Author(s):  
Luis Vasquez ◽  
Agnieszka Dybala-Defratyka

<p></p><p>Very often in order to understand physical and chemical processes taking place among several phases fractionation of naturally abundant isotopes is monitored. Its measurement can be accompanied by theoretical determination to provide a more insightful interpretation of observed phenomena. Predictions are challenging due to the complexity of the effects involved in fractionation such as solvent effects and non-covalent interactions governing the behavior of the system which results in the necessity of using large models of those systems. This is sometimes a bottleneck and limits the theoretical description to only a few methods.<br> In this work vapour pressure isotope effects on evaporation from various organic solvents (ethanol, bromobenzene, dibromomethane, and trichloromethane) in the pure phase are estimated by combining force field or self-consistent charge density-functional tight-binding (SCC-DFTB) atomistic simulations with path integral principle. Furthermore, the recently developed Suzuki-Chin path integral is tested. In general, isotope effects are predicted qualitatively for most of the cases, however, the distinction between position-specific isotope effects observed for ethanol was only reproduced by SCC-DFTB, which indicates the importance of using non-harmonic bond approximations.<br> Energy decomposition analysis performed using the symmetry-adapted perturbation theory (SAPT) revealed sometimes quite substantial differences in interaction energy depending on whether the studied system was treated classically or quantum mechanically. Those observed differences might be the source of different magnitudes of isotope effects predicted using these two different levels of theory which is of special importance for the systems governed by non-covalent interactions.</p><br><p></p>

2020 ◽  
Author(s):  
Luis Vasquez ◽  
Agnieszka Dybala-Defratyka

<p></p><p>Very often in order to understand physical and chemical processes taking place among several phases fractionation of naturally abundant isotopes is monitored. Its measurement can be accompanied by theoretical determination to provide a more insightful interpretation of observed phenomena. Predictions are challenging due to the complexity of the effects involved in fractionation such as solvent effects and non-covalent interactions governing the behavior of the system which results in the necessity of using large models of those systems. This is sometimes a bottleneck and limits the theoretical description to only a few methods.<br> In this work vapour pressure isotope effects on evaporation from various organic solvents (ethanol, bromobenzene, dibromomethane, and trichloromethane) in the pure phase are estimated by combining force field or self-consistent charge density-functional tight-binding (SCC-DFTB) atomistic simulations with path integral principle. Furthermore, the recently developed Suzuki-Chin path integral is tested. In general, isotope effects are predicted qualitatively for most of the cases, however, the distinction between position-specific isotope effects observed for ethanol was only reproduced by SCC-DFTB, which indicates the importance of using non-harmonic bond approximations.<br> Energy decomposition analysis performed using the symmetry-adapted perturbation theory (SAPT) revealed sometimes quite substantial differences in interaction energy depending on whether the studied system was treated classically or quantum mechanically. Those observed differences might be the source of different magnitudes of isotope effects predicted using these two different levels of theory which is of special importance for the systems governed by non-covalent interactions.</p><br><p></p>


2020 ◽  
Author(s):  
Luis Vasquez ◽  
Agnieszka Dybala-Defratyka

<p></p><p>Very often in order to understand physical and chemical processes taking place among several phases fractionation of naturally abundant isotopes is monitored. Its measurement can be accompanied by theoretical determination to provide a more insightful interpretation of observed phenomena. Predictions are challenging due to the complexity of the effects involved in fractionation such as solvent effects and non-covalent interactions governing the behavior of the system which results in the necessity of using large models of those systems. This is sometimes a bottleneck and limits the theoretical description to only a few methods.<br> In this work vapour pressure isotope effects on evaporation from various organic solvents (ethanol, bromobenzene, dibromomethane, and trichloromethane) in the pure phase are estimated by combining force field or self-consistent charge density-functional tight-binding (SCC-DFTB) atomistic simulations with path integral principle. Furthermore, the recently developed Suzuki-Chin path integral is tested. In general, isotope effects are predicted qualitatively for most of the cases, however, the distinction between position-specific isotope effects observed for ethanol was only reproduced by SCC-DFTB, which indicates the importance of using non-harmonic bond approximations.<br> Energy decomposition analysis performed using the symmetry-adapted perturbation theory (SAPT) revealed sometimes quite substantial differences in interaction energy depending on whether the studied system was treated classically or quantum mechanically. Those observed differences might be the source of different magnitudes of isotope effects predicted using these two different levels of theory which is of special importance for the systems governed by non-covalent interactions.</p><br><p></p>


2019 ◽  
Author(s):  
Noam Saper ◽  
Akito Ohgi ◽  
David Small ◽  
Kazuhiko Semba ◽  
Yoshiaki Nakao ◽  
...  

<div><div><div><p>Anti-Markovnikov additions to alkenes have been a longstanding goal of catalysis, and anti-Markovnikov addition of arenes to alkenes would produce alkylarenes that are distinct from those formed by acid-catalyzed processes. Existing hydroarylations are either directed or occur with low reactivity and low regioselectivities for the linear alkylarene. Herein, we report the first undirected hydroarylation of unactivated alkenes with unactivated arenes that occurs with high regioselectivity for the anti-Markovnikov product. The reaction occurs with a Ni catalyst ligated by a highly sterically hindered N-heterocyclic carbene (NHC, L4 or L5). Catalytically relevant arene- and alkene-bound Ni complexes have been characterized, and the rate-limiting step was shown to be reductive elimination to form the C-C bond. DFT calculations, combined with energy decomposition analysis (EDA), suggest that the difference in activity between catalysts containing large and small carbenes results more from stabilizing intramolecular, non-covalent interactions in the secondary coordination sphere than from steric hindrance.</p></div></div></div>


2019 ◽  
Author(s):  
Noam Saper ◽  
Akito Ohgi ◽  
David Small ◽  
Kazuhiko Semba ◽  
Yoshiaki Nakao ◽  
...  

<div><div><div><p>Anti-Markovnikov additions to alkenes have been a longstanding goal of catalysis, and anti-Markovnikov addition of arenes to alkenes would produce alkylarenes that are distinct from those formed by acid-catalyzed processes. Existing hydroarylations are either directed or occur with low reactivity and low regioselectivities for the linear alkylarene. Herein, we report the first undirected hydroarylation of unactivated alkenes with unactivated arenes that occurs with high regioselectivity for the anti-Markovnikov product. The reaction occurs with a Ni catalyst ligated by a highly sterically hindered N-heterocyclic carbene (NHC, L4 or L5). Catalytically relevant arene- and alkene-bound Ni complexes have been characterized, and the rate-limiting step was shown to be reductive elimination to form the C-C bond. DFT calculations, combined with energy decomposition analysis (EDA), suggest that the difference in activity between catalysts containing large and small carbenes results more from stabilizing intramolecular, non-covalent interactions in the secondary coordination sphere than from steric hindrance.</p></div></div></div>


2016 ◽  
Vol 18 (33) ◽  
pp. 23067-23079 ◽  
Author(s):  
Paul R. Horn ◽  
Yuezhi Mao ◽  
Martin Head-Gordon

Second generation of variational energy decomposition analysis method based on absolutely localized molecular orbitals.


2021 ◽  
Author(s):  
Anna Piras ◽  
Ganna Gryn'ova

<div> <div> <div> <p>The ability to detect persistent nitroaromatic contaminants, e.g. DNT and TNT, with high sensitivity and selectivity is central to environmental science and medicinal diagnostics. Graphene-based materials rise to this challenge, offering supreme performance, biocompatibility, and low toxicity at a reasonable cost. In the first step of the electrochemical sensing process, these substrates establish non-covalent interactions with the analytes, which we show to be indicative of their respective detection limits. Employing a combination of semiempirical tight binding quantum chemistry, meta- dynamics, density functional theory, and symmetry-adapted perturbation theory in conjunction with curated data from experimental literature, we investigate the physisorption of DNT and TNT on a series of functionalised graphene derivatives. In agreement with experimental observations, systems with greater planarity and positively charged substrates afford stronger non-covalent interactions than their highly oxidised distorted counterparts. Despite the highly polar nature of the investigated species, their non-covalent interactions are largely driven by dispersion forces. To harness these design principles, we considered a series of boron and nitrogen (co)doped two-dimensional materials. One of these systems featuring a chain of B–N–C units was found to adsorb nitroaromatic molecules stronger than the pristine graphene itself. These findings form the basis for the design principles of sensing materials and illustrate the utility of relatively low cost in silico procedures for testing the viability of designed graphene-based sensors for a plethora of analytes. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Anna Piras ◽  
Ganna Gryn'ova

<div> <div> <div> <p>The ability to detect persistent nitroaromatic contaminants, e.g. DNT and TNT, with high sensitivity and selectivity is central to environmental science and medicinal diagnostics. Graphene-based materials rise to this challenge, offering supreme performance, biocompatibility, and low toxicity at a reasonable cost. In the first step of the electrochemical sensing process, these substrates establish non-covalent interactions with the analytes, which we show to be indicative of their respective detection limits. Employing a combination of semiempirical tight binding quantum chemistry, meta- dynamics, density functional theory, and symmetry-adapted perturbation theory in conjunction with curated data from experimental literature, we investigate the physisorption of DNT and TNT on a series of functionalised graphene derivatives. In agreement with experimental observations, systems with greater planarity and positively charged substrates afford stronger non-covalent interactions than their highly oxidised distorted counterparts. Despite the highly polar nature of the investigated species, their non-covalent interactions are largely driven by dispersion forces. To harness these design principles, we considered a series of boron and nitrogen (co)doped two-dimensional materials. One of these systems featuring a chain of B–N–C units was found to adsorb nitroaromatic molecules stronger than the pristine graphene itself. These findings form the basis for the design principles of sensing materials and illustrate the utility of relatively low cost in silico procedures for testing the viability of designed graphene-based sensors for a plethora of analytes. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Noam Saper ◽  
Akito Ohgi ◽  
David Small ◽  
Kazuhiko Semba ◽  
Yoshiaki Nakao ◽  
...  

<div><div><div><p>Anti-Markovnikov additions to alkenes have been a longstanding goal of catalysis, and anti-Markovnikov addition of arenes to alkenes would produce alkylarenes that are distinct from those formed by acid-catalyzed processes. Existing hydroarylations are either directed or occur with low reactivity and low regioselectivities for the linear alkylarene. Herein, we report the first undirected hydroarylation of unactivated alkenes with unactivated arenes that occurs with high regioselectivity for the anti-Markovnikov product. The reaction occurs with a Ni catalyst ligated by a highly sterically hindered N-heterocyclic carbene (NHC, L4 or L5). Catalytically relevant arene- and alkene-bound Ni complexes have been characterized, and the rate-limiting step was shown to be reductive elimination to form the C-C bond. DFT calculations, combined with energy decomposition analysis (EDA), suggest that the difference in activity between catalysts containing large and small carbenes results more from stabilizing intramolecular, non-covalent interactions in the secondary coordination sphere than from steric hindrance.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document