scholarly journals Computational Insights into Intramolecular Cross-Coupling of Quaternary Borate Salts

Author(s):  
Florian Matz ◽  
Arif Music ◽  
Dorian Didier ◽  
Thomas C. Jagau

Cross-coupling reactions for C-C bond formation represent a cornerstone of organic synthesis. In most cases, they make use of transition metals, which has several downsides. Recently, metal-free alternatives relying on electrochemistry have gained interest. One example of such a reaction is the oxidation of tetraorganoborate salts that initiates aryl-aryl and aryl-alkenyl couplings with promising selectivities. This work investigates the mechanism of this reaction computationally using density functional and coupled-cluster theory. Our calculations reveal a distinct difference between aryl-alkenyl and aryl-aryl couplings: While C-C bond formation occurs irreversibly and without an energy barrier if an alkenyl residue is involved, many intermediates can be identified in aryl-aryl couplings. In the latter case, intramolecular transitions between reaction paths leading to different products are possible. Based on the energy differences between these intermediates, we develop a kinetic model to estimate product distributions for aryl-aryl couplings.<br>

2021 ◽  
Author(s):  
Florian Matz ◽  
Arif Music ◽  
Dorian Didier ◽  
Thomas C. Jagau

Cross-coupling reactions for C-C bond formation represent a cornerstone of organic synthesis. In most cases, they make use of transition metals, which has several downsides. Recently, metal-free alternatives relying on electrochemistry have gained interest. One example of such a reaction is the oxidation of tetraorganoborate salts that initiates aryl-aryl and aryl-alkenyl couplings with promising selectivities. This work investigates the mechanism of this reaction computationally using density functional and coupled-cluster theory. Our calculations reveal a distinct difference between aryl-alkenyl and aryl-aryl couplings: While C-C bond formation occurs irreversibly and without an energy barrier if an alkenyl residue is involved, many intermediates can be identified in aryl-aryl couplings. In the latter case, intramolecular transitions between reaction paths leading to different products are possible. Based on the energy differences between these intermediates, we develop a kinetic model to estimate product distributions for aryl-aryl couplings.<br>


2021 ◽  
Author(s):  
Florian Matz ◽  
Arif Music ◽  
Dorian Didier ◽  
Thomas C. Jagau

Cross-coupling reactions for C-C bond formation represent a cornerstone of organic synthesis. In most cases, they make use of transition metals, which has several downsides. Recently, metal-free alternatives relying on electrochemistry have gained interest. One example of such a reaction is the oxidation of tetraorganoborate salts that initiates aryl-aryl and aryl-alkenyl couplings with promising selectivities. This work investigates the mechanism of this reaction computationally using density functional and coupled-cluster theory. Our calculations reveal a distinct difference between aryl-alkenyl and aryl-aryl couplings: While C-C bond formation occurs irreversibly and without an energy barrier if an alkenyl residue is involved, many intermediates can be identified in aryl-aryl couplings. In the latter case, intramolecular transitions between reaction paths leading to different products are possible. Based on the energy differences between these intermediates, we develop a kinetic model to estimate product distributions for aryl-aryl couplings.<br>


Synthesis ◽  
2021 ◽  
Vol 53 (06) ◽  
pp. 1061-1076
Author(s):  
Chao Jiang ◽  
Xiangbing Qi ◽  
Chao Yang

AbstractOrganozirconium chemistry has found extensive applications in organic synthesis since its discovery in the last century. Alkyl­zirconocenes, which are easily generated by the hydrozirconation of alkenes with the Schwartz reagent, are widely utilized for carbon–carbon­ and carbon–heteroatom bond formation. This short review summarizes the progress to date on the applications alkylzirconocenes in organic synthesis.1 Introduction2 General Methods for Generating Alkylzirconocenes3 Transformations of Alkylzirconocenes by Heteroatoms4 Insertion of Unsaturated Groups into Alkylzirconocenes5 Transmetalations6 Cross-Coupling Reactions of Alkylzirconocenes7 Photochemistry of Alkylzirconocenes8 Bimetallic Reagents of Zirconium9 Asymmetric Transformations10 Applications of Alkylzirconocenes Generated from the Negishi Reagent11 Conclusions and Outlook


2021 ◽  
Vol 08 ◽  
Author(s):  
Lalit Yadav ◽  
Sandeep Chaudhary

: The formation of new bonds through C-C bond formation is of utmost importance in the synthesis of biologically privileged scaffolds and therapeutic drugs. In recent years, extensive efforts has been done to improve the intermolecular and intramolecular cross-coupling reaction in the simple, mild, efficient, economical, and eco-friendly manner via transition metal-free or organocatalytic direct C-H bond activation methodology. The traditional crosscoupling era continuously shifted to metal-free, organocatalytic, or metal-free cross-dehydrogenative coupling strategies to fast-track the reactions and diminishing the typical purification processes. Therefore, recent advances on the transitionmetal-free, organocatalytic inter- and intra-molecular cross-coupling reactions have been introduced and discussed in the present article. In view of the reaction mechanism, organocatalytic cross-coupling reactions undergo through the radical pathways, radical anionic intermediate which is completely different from traditional transition metal-catalyzed reactions. The exploration of transition metal-free organocatalyzed cross-couplings for direct C-H arylation of arenes has grown significantly, thereby, improving the formation of a wide range of aryl-aryl /aryl-heteroaryl/ heteroaryl-heteroaryl compounds. In the survey, transition metal-free/organocatalytic cross-coupling reactions showed a higher efficiency under simple and mild conditions than the comparative transition metal-catalyzed cross-coupling reactions. However, the higher regioselectivity and chemoselectivity are still far ahead in organocatalytic cross-coupling reactions due to their specific intrinsic mechanistic pathway. The tuning of many parameters such as oxidative states, ligands coordination, and counter anions, etc., which results in the specific direct C-H functionalization with flexible methodology are missing in the transition metal-free cross-coupling reactions. The highly systematic transition metal-catalyzed chemistry is still playing a dominant role over transition metal-free chemistry in organic synthesis. The organocatalyzed transition-metal-free conditions should be more efficient, chemoselective, and regioselective for further potential development and applications in organic synthesis. For the endless pursuit of sustainable chemistry and green chemistry, such transition-metalfree/organocatalytic reactions should be never ceased. Additional curious attention and interest have been developed so far, and chemists are showing their eagerness and talents to uncover the hidden treasure of green chemistry. In this review article, we highlighted the developments of various transition metal-free/organocatalytic C-H bond activation reactions which further encourages the advancement in the development of sustainable C-C coupling reactions and their further applications towards the synthesis of biologically privileged scaffolds and drug molecules.


Synthesis ◽  
2021 ◽  
Author(s):  
Felipe C. Demidoff ◽  
Leandro L. de Carvalho ◽  
Eduardo José P. Rodrigues Filho ◽  
Andréa Luzia F. de Souza ◽  
Chaquip D. Netto

AbstractFunctionalized 1,4-naphthoquinones have been employed as versatile synthons in organic synthesis, in addition to presenting a large array of biological activities. Herein, the applications of 2-amino-/ acetylamino-substituted 3-iodo-1,4-naphthoquinones in cross-coupling reactions are described to successfully afford sixteen novel 3-styryl-1,4-naphthoquinones (amino-stilbene-quinone hybrids) and four 3-alkynyl-1,4-naphthoquinone in overall good yields. Interestingly, the alkynylated derivatives could be obtained from ligand- and Pd-free CuI-mediated cross-coupling reactions, after extensive investigations to exclude Pd as a co-catalyst. Lastly, the desilanized terminal alkyne was subjected to click chemistry reactions to give two novel triazole-1,4-naphthoquinone hybrids.


2019 ◽  
Author(s):  
Dengmengfei Xiao ◽  
Lili Zhao ◽  
Diego Andrada

Unstrained cyclic ketones can participate in cooperative Suzuki-Miyaura cross-coupling type reaction using rhodium(I)-based catalyst via C-C bond activation. The regioselectivity indicates a trend where the most substituted side is activated and it is controlled by the beta-substituents. In this work, Density Functional Theory (DFT) calculations have been carried out to disclose the underlying mechanism in the reaction of a ketone series and arylboronate using ylidene as ancillary ligand and pyridine as co-catalysts. The computed energies suggest the reductive elimination step with the highest energy while the reductive elimination has the highest energy barrier. By the means of the Activation Strain Model (ASM) of chemical reactivity, it is found that the ketone strain energy released on the oxidative addition does not control the relativity of the OA reactivity, but indeed is the interaction energy between Rh(I) and C-C bond the ruling effect. The effect of the beta-substituents on regioselectivity has been additionally studied.


Synthesis ◽  
2020 ◽  
Vol 52 (23) ◽  
pp. 3511-3529 ◽  
Author(s):  
Peter Koóš ◽  
Martin Markovič ◽  
Pavol Lopatka ◽  
Tibor Gracza

Considerable advances have been made using continuous flow chemistry as an enabling tool in organic synthesis. Consequently, the number of articles reporting continuous flow methods has increased significantly in recent years. This review covers the progress achieved in homogeneous palladium catalysis using continuous flow conditions over the last five years, including C–C/C–N cross-coupling reactions, carbonylations and reductive/oxidative transformations.1 Introduction2 C–C Cross-Coupling Reactions3 C–N Coupling Reactions4 Carbonylation Reactions5 Miscellaneous Reactions6 Key to Schematic Symbols7 Conclusion


Sign in / Sign up

Export Citation Format

Share Document