scholarly journals Ultrafast Relaxation Dynamics of the S1 (nπ*) State and the 3p and 3d Rydberg States in Cyclohexanone by Femtosecond Photoelectron Imaging

Author(s):  
Ole Hüter ◽  
Niklas Helle ◽  
Friedrich Temps

<div>The radiationless decay dynamics of the S1 (nπ*) state and the 3p and 3d Rydberg states of cyclohexanone are investigated using femtosecond time-resolved time-of- flight mass spectrometry and photoelectron imaging spectroscopy. After two-photon excitation of the 3p and 3d states, an ultrafast population transfer to the 3s state is observed within < 120 fs. We ascribe this behavior to strong vibronic interactions of the excited Rydberg states with the <sup>1</sup>ππ* valence state that enable an ultrafast population transfer via an avoided crossing and the subsequent passage of a conical intersection between the respective electronic states. Eventually, the 3s state deactivates by internal conversion to the S<sub>1</sub> (nπ*) state, which in turn is found to be long-lived with a decay time of ~ 300 - 800 ps.</div>

2019 ◽  
Author(s):  
Ole Hüter ◽  
Niklas Helle ◽  
Friedrich Temps

<div>The radiationless decay dynamics of the S1 (nπ*) state and the 3p and 3d Rydberg states of cyclohexanone are investigated using femtosecond time-resolved time-of- flight mass spectrometry and photoelectron imaging spectroscopy. After two-photon excitation of the 3p and 3d states, an ultrafast population transfer to the 3s state is observed within < 120 fs. We ascribe this behavior to strong vibronic interactions of the excited Rydberg states with the <sup>1</sup>ππ* valence state that enable an ultrafast population transfer via an avoided crossing and the subsequent passage of a conical intersection between the respective electronic states. Eventually, the 3s state deactivates by internal conversion to the S<sub>1</sub> (nπ*) state, which in turn is found to be long-lived with a decay time of ~ 300 - 800 ps.</div>


2017 ◽  
Vol 14 (10) ◽  
pp. 105301 ◽  
Author(s):  
Yuzhu Liu ◽  
Wenyi Yin ◽  
Thomas Gerber ◽  
Feng Jin ◽  
Gregor Knopp

2018 ◽  
Vol 148 (14) ◽  
pp. 144311 ◽  
Author(s):  
Fengzi Ling ◽  
Shuai Li ◽  
Jie Wei ◽  
Kai Liu ◽  
Yanmei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document