Brain Tumor Diagnosis Using Convolutional Neural Network

2019 ◽  
Vol 7 (7) ◽  
pp. 101-104
Author(s):  
Parveen . ◽  
K. Sreekanth
Author(s):  
Ambeshwar Kumar ◽  
Ramachandran Manikandan ◽  
Utku Kose ◽  
Deepak Gupta ◽  
Suresh C. Satapathy

In Medicine Deep Learning has become an essential tool to achieve outstanding diagnosis on image data. However, one critical problem is that Deep Learning comes with complicated, black-box models so it is not possible to analyze their trust level directly. So, Explainable Artificial Intelligence (XAI) methods are used to build additional interfaces for explaining how the model has reached the outputs by moving from the input data. Of course, that's again another competitive problem to analyze if such methods are successful according to the human view. So, this paper comes with two important research efforts: (1) to build an explainable deep learning model targeting medical image analysis, and (2) to evaluate the trust level of this model via several evaluation works including human contribution. The target problem was selected as the brain tumor classification, which is a remarkable, competitive medical image-based problem for Deep Learning. In the study, MR-based pre-processed brain images were received by the Subtractive Spatial Lightweight Convolutional Neural Network (SSLW-CNN) model, which includes additional operators to reduce the complexity of classification. In order to ensure the explainable background, the model also included Class Activation Mapping (CAM). It is important to evaluate the trust level of a successful model. So, numerical success rates of the SSLW-CNN were evaluated based on the peak signal-to-noise ratio (PSNR), computational time, computational overhead, and brain tumor classification accuracy. The objective of the proposed SSLW-CNN model is to obtain faster and good tumor classification with lesser time. The results illustrate that the SSLW-CNN model provides better performance of PSNR which is enhanced by 8%, classification accuracy is improved by 33%, computation time is reduced by 19%, computation overhead is decreased by 23%, and classification time is minimized by 13%, as compared to state-of-the-art works. Because the model provided good numerical results, it was then evaluated in terms of XAI perspective by including doctor-model based evaluations such as feedback CAM visualizations, usability, expert surveys, comparisons of CAM with other XAI methods, and manual diagnosis comparison. The results show that the SSLW-CNN provides good performance on brain tumor diagnosis and ensures a trustworthy solution for the doctors.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mohsen Ahmadi ◽  
Fatemeh Dashti Ahangar ◽  
Nikoo Astaraki ◽  
Mohammad Abbasi ◽  
Behzad Babaei

In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer to predict the numerical feature corresponded to labels or classes. The presented classifier is implemented in brain tumor diagnosis. For feature extraction, a fractal model with four Gaussian functions is used. The classification is performed on 2000 MRI images. Regarding the results, the accuracy of the DT, KNN, LDA, NB, MLP, and SVM is 93.5%, 87.6%, 61.5%, 57.5%, 68.5%, and 43.6%, respectively. Based on the results, the presented FWNNet illustrates the highest accuracy of 100% with the fractal feature extraction method and brain tumor diagnosis based on MRI images. Based on the results, the best classifier for diagnosis of the brain tumor is FWNNet architecture. However, the second and third high-performance classifiers are the DT and KNN, respectively. Moreover, the presented FWNNet method is implemented for the segmentation of brain tumors. In this paper, we present a novel supervised segmentation method based on the FWNNet layer. In the training process, input images with a sweeping filter should be reshaped to vectors that correspond to reshaped ground truth images. In the training process, we performed a PSO algorithm to optimize the gradient descent algorithm. For this purpose, 80 MRI images are used to segment the brain tumor. Based on the results of the ROC curve, it can be estimated that the presented layer can segment the brain tumor with a high true-positive rate.


2019 ◽  
Vol 82 ◽  
pp. 105528 ◽  
Author(s):  
Ambeshwar Kumar ◽  
Manikandan Ramachandran ◽  
Amir H. Gandomi ◽  
Rizwan Patan ◽  
Szymon Lukasik ◽  
...  

1999 ◽  
Vol 21 (1) ◽  
pp. 121-124 ◽  
Author(s):  
J. Slowiński ◽  
M. Harabin-Slowińska ◽  
R. Mrówka

2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


Sign in / Sign up

Export Citation Format

Share Document