Level Set Method Optimized with the Euclidean Distance Transform

Author(s):  
Luis Fernando Segalla ◽  
Alexandre Zabot ◽  
Diogo Nardelli Siebert ◽  
Fabiano Wolf
Author(s):  
Kuryati Kipli ◽  
Mohammed Enamul Hoque ◽  
Lik Thai Lim ◽  
Tengku Mohd Afendi Zulcaffle ◽  
Siti Kudnie Sahari ◽  
...  

2018 ◽  
Author(s):  
Sebastian Daberdaku

Protein pockets and cavities usually coincide with the active sites of biological processes, and their identification is significant since it constitutes an important step for structure-based drug design and protein-ligand docking applications. This paper presents a novel purely geometric algorithm for the detection of ligand binding protein pockets and cavities based on the Euclidean Distance Transform (EDT). The EDT can be used to compute the Solvent-Excluded surface for any given probe sphere radius value at high resolutions and in a timely manner. The algorithm is adaptive to the specific candidate ligand: it computes two voxelised protein surfaces using two different probe sphere radii depending on the shape of the candidate ligand. The pocket regions consist of the voxels located between the two surfaces, which exhibit a certain minimum depth value from the outer surface. The distance map values computed by the EDT algorithm during the second surface computation can be used to elegantly determine the depth of each candidate pocket and to rank them accordingly. Cavities on the other hand, are identified by scanning the inside of the protein for voids. The algorithm determines and outputs the best k candidate pockets and cavities, i.e. the ones that are more likely to bind to the given ligand. The method was applied to a representative set of protein-ligand complexes and their corresponding unbound protein structures to evaluate its ligand binding site prediction capabilities, and was shown to outperform most of the previously developed purely geometric pocket and cavity search methods.


Sign in / Sign up

Export Citation Format

Share Document