Late Quaternary vegetation and climate history reconstructed from palynology of marine cores off southwestern New Zealand

2021 ◽  
Author(s):  
◽  
Matthew Thomas Ryan

<p>Little is known about how mid-latitude Southern Hemisphere terrestrial vegetation responded during glacial terminations and the warmer phases of the Late Quaternary, especially beyond the last glacial cycle where records are commonly fragmentary and poorly-dated. The timing, magnitude and sequence of environmental changes are investigated here for terminations (T) I, II and V and their subsequent warm interglacials of MIS 1, 5e and 11 by direct correlation of terrestrial palynomorphs (pollen and spores) and marine climate indicators in marine piston cores MD06-2990/2991 recovered from the East Tasman Sea, west of South Island, New Zealand. The climate there is strongly influenced by the prevailing mid-latitude westerly wind belt that generates significant amounts of orographic rainfall and the proximity of the ocean which moderates temperature variability. Chronological constraint for the cores is provided by δ¹⁸O stratigraphy, radiocarbon chronology and the identification of two widespread silicic tephra horizons (25.6 ka Kawakawa/Oruanui Tephra (KOT); ~345 ka Rangitawa Tephra (RtT)) sourced from the central North Island.  Similar vegetation changes over the last two glacial cycles at MD06-2991 and in the adjacent nearby on land record of vegetation-climate change from Okarito Bog permit transfer of the well resolved Marine Isotope Stage (MIS) chronology to Okarito for the pre radiocarbon dated interval (~139-28 ka). Placing both sequences on a common age scale nonetheless assumes there is minimal lag between pollen production and final deposition on the seafloor. However, the timing of Late Pleistocene palynomorph events and KOT between independently dated marine and terrestrial sedimentary sequences are found in this study to be indistinguishable, which supports the direct transfer of terrestrially derived ages to the marine realm and vice versa.  Vegetation change in southwestern New Zealand is of similar structure during T-I and T-II, despite different amplitudes of forcing (i.e., insolation rise, CO₂ concentrations). In a climate amelioration scenario, shrubland-grassland gave rise to dominantly podocarp-broadleaf forest taxa, with accompanying rises in mean annual air temperature (MAAT) estimated from Okarito pollen typically synchronous with nearby ocean temperatures. The T-II amelioration commenced after ~139 ka in response to increasing boreal summer insolation intensity, with prominent ocean-atmosphere warming over the period from ~133-130 ka. In contrast, northern mid-high latitude paleoclimate records display cooling over Heinrich Stadial 11 (~135-130 ka), and are prominently warm from ~130-128 ka, while southwestern New Zealand and the adjacent ocean displays cooling. Such millennial-scale climate asynchrony between the hemispheres is most likely a result of a systematic, but non-linear re-organisation of the ocean-atmosphere circulation system in response to orbital forcing. The subsequent MIS 5e climatic optimum in Westland was between ~128-123 ka, with maximum temperatures reconstructed in the ocean and atmosphere of 2.5°C and 1.5°C higher than present.  Similarities revealed between land and sea pollen records in southwestern New Zealand over the last ~160 ka offer confidence for assessing vegetation and climate for older intervals, including T-V/MIS 11, for which no adjacent terrestrial equivalents currently exist. Vegetation change over T-V is similar to T-II and T-I, with southern warming antiphased with northern mid-high latitude cooling. Tall trees and the thermophilous shrub Ascarina lucida define interglacial conditions in the study region between ~428-396 ka. East Tasman Sea surface temperatures rose in two phases; 435-426 ka (MIS 12a-MIS 11e) and 417-407 ka (MIS 11c climatic optimum), reaching at least ~1.5-2°C warmer than present over the latter. Similarly, Ascarina lucida dominance over MIS 11c is akin to that displayed during the early Holocene climatic optimum (11.5-9 ka) in west-central North Island, where MAAT average ~3°C higher today. This contrasts markedly with the dominance of the tall tree conifer Dacrydium cupressinum for the Holocene (MIS 1) and last interglacial (MIS 5e) in southwestern New Zealand. Biogeographic barriers are proposed to have inhibited the migration of species from more northerly latitudes better adapted to warmer climatic conditions over MIS 5e and MIS 11.</p>

2021 ◽  
Author(s):  
◽  
Matthew Thomas Ryan

<p>Little is known about how mid-latitude Southern Hemisphere terrestrial vegetation responded during glacial terminations and the warmer phases of the Late Quaternary, especially beyond the last glacial cycle where records are commonly fragmentary and poorly-dated. The timing, magnitude and sequence of environmental changes are investigated here for terminations (T) I, II and V and their subsequent warm interglacials of MIS 1, 5e and 11 by direct correlation of terrestrial palynomorphs (pollen and spores) and marine climate indicators in marine piston cores MD06-2990/2991 recovered from the East Tasman Sea, west of South Island, New Zealand. The climate there is strongly influenced by the prevailing mid-latitude westerly wind belt that generates significant amounts of orographic rainfall and the proximity of the ocean which moderates temperature variability. Chronological constraint for the cores is provided by δ¹⁸O stratigraphy, radiocarbon chronology and the identification of two widespread silicic tephra horizons (25.6 ka Kawakawa/Oruanui Tephra (KOT); ~345 ka Rangitawa Tephra (RtT)) sourced from the central North Island.  Similar vegetation changes over the last two glacial cycles at MD06-2991 and in the adjacent nearby on land record of vegetation-climate change from Okarito Bog permit transfer of the well resolved Marine Isotope Stage (MIS) chronology to Okarito for the pre radiocarbon dated interval (~139-28 ka). Placing both sequences on a common age scale nonetheless assumes there is minimal lag between pollen production and final deposition on the seafloor. However, the timing of Late Pleistocene palynomorph events and KOT between independently dated marine and terrestrial sedimentary sequences are found in this study to be indistinguishable, which supports the direct transfer of terrestrially derived ages to the marine realm and vice versa.  Vegetation change in southwestern New Zealand is of similar structure during T-I and T-II, despite different amplitudes of forcing (i.e., insolation rise, CO₂ concentrations). In a climate amelioration scenario, shrubland-grassland gave rise to dominantly podocarp-broadleaf forest taxa, with accompanying rises in mean annual air temperature (MAAT) estimated from Okarito pollen typically synchronous with nearby ocean temperatures. The T-II amelioration commenced after ~139 ka in response to increasing boreal summer insolation intensity, with prominent ocean-atmosphere warming over the period from ~133-130 ka. In contrast, northern mid-high latitude paleoclimate records display cooling over Heinrich Stadial 11 (~135-130 ka), and are prominently warm from ~130-128 ka, while southwestern New Zealand and the adjacent ocean displays cooling. Such millennial-scale climate asynchrony between the hemispheres is most likely a result of a systematic, but non-linear re-organisation of the ocean-atmosphere circulation system in response to orbital forcing. The subsequent MIS 5e climatic optimum in Westland was between ~128-123 ka, with maximum temperatures reconstructed in the ocean and atmosphere of 2.5°C and 1.5°C higher than present.  Similarities revealed between land and sea pollen records in southwestern New Zealand over the last ~160 ka offer confidence for assessing vegetation and climate for older intervals, including T-V/MIS 11, for which no adjacent terrestrial equivalents currently exist. Vegetation change over T-V is similar to T-II and T-I, with southern warming antiphased with northern mid-high latitude cooling. Tall trees and the thermophilous shrub Ascarina lucida define interglacial conditions in the study region between ~428-396 ka. East Tasman Sea surface temperatures rose in two phases; 435-426 ka (MIS 12a-MIS 11e) and 417-407 ka (MIS 11c climatic optimum), reaching at least ~1.5-2°C warmer than present over the latter. Similarly, Ascarina lucida dominance over MIS 11c is akin to that displayed during the early Holocene climatic optimum (11.5-9 ka) in west-central North Island, where MAAT average ~3°C higher today. This contrasts markedly with the dominance of the tall tree conifer Dacrydium cupressinum for the Holocene (MIS 1) and last interglacial (MIS 5e) in southwestern New Zealand. Biogeographic barriers are proposed to have inhibited the migration of species from more northerly latitudes better adapted to warmer climatic conditions over MIS 5e and MIS 11.</p>


2021 ◽  
Author(s):  
MJ Salinger ◽  
James Renwick ◽  
E Behrens ◽  
AB Mullan ◽  
HJ Diamond ◽  
...  

© 2019 The Author(s). Published by IOP Publishing Ltd. During austral summer (DJF) 2017/18, the New Zealand region experienced an unprecedented coupled ocean-atmosphere heatwave, covering an area of 4 million km2. Regional average air temperature anomalies over land were +2.2 °C, and sea surface temperature anomalies reached +3.7 °C in the eastern Tasman Sea. This paper discusses the event, including atmospheric and oceanic drivers, the role of anthropogenic warming, and terrestrial and marine impacts. The heatwave was associated with very low wind speeds, reducing upper ocean mixing and allowing heat fluxes from the atmosphere to the ocean to cause substantial warming of the stratified surface layers of the Tasman Sea. The event persisted for the entire austral summer resulting in a 3.8 ± 0.6 km3 loss of glacier ice in the Southern Alps (the largest annual loss in records back to 1962), very early Sauvignon Blanc wine-grape maturation in Marlborough, and major species disruption in marine ecosystems. The dominant driver was positive Southern Annular Mode (SAM) conditions, with a smaller contribution from La Niña. The long-term trend towards positive SAM conditions, a result of stratospheric ozone depletion and greenhouse gas increase, is thought to have contributed through association with more frequent anticyclonic 'blocking' conditions in the New Zealand region and a more poleward average latitude for the Southern Ocean storm track. The unprecedented heatwave provides a good analogue for possible mean conditions in the late 21st century. The best match suggests this extreme summer may be typical of average New Zealand summer climate for 2081-2100, under the RCP4.5 or RCP6.0 scenario.


2003 ◽  
Vol 60 (1) ◽  
pp. 19-32 ◽  
Author(s):  
Thomas A. Ager

AbstractPollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000–26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000–15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000–9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.


2021 ◽  
Author(s):  
MJ Salinger ◽  
James Renwick ◽  
E Behrens ◽  
AB Mullan ◽  
HJ Diamond ◽  
...  

© 2019 The Author(s). Published by IOP Publishing Ltd. During austral summer (DJF) 2017/18, the New Zealand region experienced an unprecedented coupled ocean-atmosphere heatwave, covering an area of 4 million km2. Regional average air temperature anomalies over land were +2.2 °C, and sea surface temperature anomalies reached +3.7 °C in the eastern Tasman Sea. This paper discusses the event, including atmospheric and oceanic drivers, the role of anthropogenic warming, and terrestrial and marine impacts. The heatwave was associated with very low wind speeds, reducing upper ocean mixing and allowing heat fluxes from the atmosphere to the ocean to cause substantial warming of the stratified surface layers of the Tasman Sea. The event persisted for the entire austral summer resulting in a 3.8 ± 0.6 km3 loss of glacier ice in the Southern Alps (the largest annual loss in records back to 1962), very early Sauvignon Blanc wine-grape maturation in Marlborough, and major species disruption in marine ecosystems. The dominant driver was positive Southern Annular Mode (SAM) conditions, with a smaller contribution from La Niña. The long-term trend towards positive SAM conditions, a result of stratospheric ozone depletion and greenhouse gas increase, is thought to have contributed through association with more frequent anticyclonic 'blocking' conditions in the New Zealand region and a more poleward average latitude for the Southern Ocean storm track. The unprecedented heatwave provides a good analogue for possible mean conditions in the late 21st century. The best match suggests this extreme summer may be typical of average New Zealand summer climate for 2081-2100, under the RCP4.5 or RCP6.0 scenario.


2012 ◽  
Vol 253 ◽  
pp. 18-31 ◽  
Author(s):  
Paul Augustinus ◽  
Ursula Cochran ◽  
Giri Kattel ◽  
Donna D’Costa ◽  
Phil Shane
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document