scholarly journals An efficient Multiobjective Dynamic Task Scheduling to Minimize Task Execution Time for Computational Grid

Author(s):  
Sophiya Sheikh
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4508
Author(s):  
Xin Li ◽  
Liangyuan Wang ◽  
Jemal H. Abawajy ◽  
Xiaolin Qin ◽  
Giovanni Pau ◽  
...  

Efficient big data analysis is critical to support applications or services in Internet of Things (IoT) system, especially for the time-intensive services. Hence, the data center may host heterogeneous big data analysis tasks for multiple IoT systems. It is a challenging problem since the data centers usually need to schedule a large number of periodic or online tasks in a short time. In this paper, we investigate the heterogeneous task scheduling problem to reduce the global task execution time, which is also an efficient method to reduce energy consumption for data centers. We establish the task execution for heterogeneous tasks respectively based on the data locality feature, which also indicate the relationship among the tasks, data blocks and servers. We propose a heterogeneous task scheduling algorithm with data migration. The core idea of the algorithm is to maximize the efficiency by comparing the cost between remote task execution and data migration, which could improve the data locality and reduce task execution time. We conduct extensive simulations and the experimental results show that our algorithm has better performance than the traditional methods, and data migration actually works to reduce th overall task execution time. The algorithm also shows acceptable fairness for the heterogeneous tasks.


2014 ◽  
Vol 519-520 ◽  
pp. 284-287
Author(s):  
Jun Wei Ge ◽  
Jun Li Shen ◽  
Yi Qiu Fang

In order to improve resource utilization in cloud environment and reduce the total task execution time, a new scheduling strategytask scheduling strategy based on dynamic backup was proposed. The cloud system scheduling model was built, according to different security requirements for tasks to users and different trust level for nodes. This model can schedule the number of tasks backup reasonably, according to the change of system trust index. The simulation result shows that, this strategy can improve the overall system efficiency effectively.


Author(s):  
Danlami Gabi ◽  
Abdul Samad Ismail ◽  
Anazida Zainal ◽  
Zalmiyah Zakaria ◽  
Ahmad Al-Khasawneh

The unpredictable number of task arriving at cloud datacentre and the rescaling of virtual processing elements can affect the provisioning of better Quality of Service expectations during task scheduling in cloud computing. Existing researchers have contributed several task scheduling algorithms to provide better QoS expectations but are characterized with entrapment at the local search and high dimensional breakdown due to slow convergence speed and imbalance between global and local search, resulting from lack of scalability. Dynamic task scheduling algorithms that can adjust to long-time changes and continue facilitating the provisioning of better QoS are necessary for cloud computing environment. In this study, a Cloud Scalable Multi-Objective Cat Swarm Optimization-based Simulated Annealing algorithm is proposed. In the proposed method, the orthogonal Taguchi approach is applied to enhance the SA which is incorporated into the local search of the proposed CSMCSOSA algorithm for scalability performance. A multi-objective QoS model based on execution time and execution cost criteria is presented to evaluate the efficiency of the proposed algorithm on CloudSim tool with two different datasets. Quantitative analysis of the algorithm is carried out with metrics of execution time, execution cost, QoS and performance improvement rate percentage. Meanwhile, the scalability analysis of the proposed algorithm using Isospeed-efficiency scalability metric is also reported. The results of the experiment show that the proposed CSM-CSOSA has outperformed Multi-Objective Genetic Algorithm, Multi-Objective Ant Colony and Multi-Objective Particle Swarm Optimization by returning minimum execution time and execution cost as well as better scalability acceptance rate of 0.4811−0.8990 respectively. The proposed solution when implemented in real cloud computing environment could possibly meet customers QoS expectations as well as that of the service providers.  


2020 ◽  
Vol 1 (6) ◽  
Author(s):  
Chathurangi Shyalika ◽  
Thushari Silva ◽  
Asoka Karunananda

Sign in / Sign up

Export Citation Format

Share Document