scholarly journals A Finite Model Property for Gödel Modal Logics

10.29007/vgh2 ◽  
2018 ◽  
Author(s):  
Xavier Caicedo ◽  
George Metcalfe ◽  
Ricardo Rodriguez ◽  
Jonas Rogger

A new semantics with the finite model property is provided and used to establish decidability for Gödel modal logics based on (crisp or fuzzy) Kripke frames combined locally with Gödel logic. A similar methodology is also used to establish decidability, indeed co-NP-completeness, for a Gödel S5 logic that coincides with the one-variable fragment of first-order Gödel logic.

2003 ◽  
Vol 68 (2) ◽  
pp. 419-462 ◽  
Author(s):  
George Goguadze ◽  
Carla Piazza ◽  
Yde Venema

AbstractWe define an interpretation of modal languages with polyadic operators in modal languages that use monadic operators (diamonds) only. We also define a simulation operator which associates a logic Λsim in the diamond language with each logic Λ in the language with polyadic modal connectives. We prove that this simulation operator transfers several useful properties of modal logics, such as finite/recursive axiomatizability, frame completeness and the finite model property, canonicity and first-order definability.


2005 ◽  
Vol 70 (3) ◽  
pp. 993-1021 ◽  
Author(s):  
D. Gabelaia ◽  
A. Kurucz ◽  
F. Wolter ◽  
M. Zakharyaschev

AbstractWe solve a major open problem concerning algorithmic properties of products of ‘transitive’ modal logics by showing that products and commutators of such standard logics as K4, S4, S4.1, K4.3, GL, or Grz are undecidable and do not have the finite model property. More generally, we prove that no Kripke complete extension of the commutator [K4, K4] with product frames of arbitrary finite or infinite depth (with respect to both accessibility relations) can be decidable. In particular, if l1 and l2 are classes of transitive frames such that their depth cannot be bounded by any fixed n < ω, then the logic of the class {5ℑ1 × ℑ2 ∣ ℑ1 ∈ l1, ℑ2, ∈ l2} is undecidable. (On the contrary, the product of, say, K4 and the logic of all transitive Kripke frames of depth ≤ n, for some fixed n < ω, is decidable.) The complexity of these undecidable logics ranges from r.e. to co-r.e. and Π11-complete. As a consequence, we give the first known examples of Kripke incomplete commutators of Kripke complete logics.


2012 ◽  
Vol 77 (3) ◽  
pp. 729-765 ◽  
Author(s):  
Emanuel Kieroński ◽  
Martin Otto

AbstractWe study first-order logic with two variables FO2 and establish a small substructure property. Similar to the small model property for FO2 we obtain an exponential size bound on embedded substructures, relative to a fixed surrounding structure that may be infinite. We apply this technique to analyse the satisfiability problem for FO2 under constraints that require several binary relations to be interpreted as equivalence relations. With a single equivalence relation, FO2 has the finite model property and is complete for non-deterministic exponential time, just as for plain FO2. With two equivalence relations, FO2 does not have the finite model property, but is shown to be decidable via a construction of regular models that admit finite descriptions even though they may necessarily be infinite. For three or more equivalence relations, FO2 is undecidable.


2017 ◽  
Vol 25 (5) ◽  
pp. 758-772 ◽  
Author(s):  
Luka Mikec ◽  
Tin Perkov ◽  
Mladen Vuković

Abstract The finite model property is a key step in proving decidability of modal logics. By adapting the filtration method to the generalized Veltman semantics for interpretability logics, we have been able to prove the finite model property of interpretability logic ILM0 w.r.t. generalized Veltman models. We use the same technique to prove the finite model property of interpretability logic ILW* w.r.t. generalized Veltman models. The missing link needed to prove the decidability of ILM0 was completeness w.r.t. generalized Veltman models, which we obtain in this article. Thus, we prove the decidability of ILM0, which was an open problem. Using the same technique, we prove that ILW* is also decidable.


1990 ◽  
Vol 55 (3) ◽  
pp. 1090-1098 ◽  
Author(s):  
Sergei Artemov ◽  
Giorgie Dzhaparidze

AbstractThe paper proves a predicate version of Solovay's well-known theorem on provability interpretations of modal logic:If a closed modal predicate-logical formula R is not valid in some finite Kripke model, then there exists an arithmetical interpretation f such that PA ⊬ fR.This result implies the arithmetical completeness of arithmetically correct modal predicate logics with the finite model property (including the one-variable fragments of QGL and QS). The proof was obtained by adding “the predicate part” as a specific addition to the standard Solovay construction.


Author(s):  
Xavier Caicedo ◽  
George Metcalfe ◽  
Ricardo Rodríguez ◽  
Jonas Rogger

1995 ◽  
Vol 60 (3) ◽  
pp. 757-774 ◽  
Author(s):  
Frank Wolter

AbstractTense logics in the bimodal propositional language are investigated with respect to the Finite Model Property. In order to prove positive results techniques from investigations of modal logics above K4 are extended to tense logic. General negative results show the limits of the transfer.


Sign in / Sign up

Export Citation Format

Share Document