scholarly journals Algebraic number fields with the discriminant equal to that of a quadratic number field

1995 ◽  
Vol 47 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Takeshi KONDO
2012 ◽  
Vol 11 (05) ◽  
pp. 1250087 ◽  
Author(s):  
ANDREAS PHILIPP

Let R be an order in an algebraic number field. If R is a principal order, then many explicit results on its arithmetic are available. Among others, R is half-factorial if and only if the class group of R has at most two elements. Much less is known for non-principal orders. Using a new semigroup theoretical approach, we study half-factoriality and further arithmetical properties for non-principal orders in algebraic number fields.


Author(s):  
Peter Koymans ◽  
Carlo Pagano

Abstract In $1801$, Gauss found an explicit description, in the language of binary quadratic forms, for the $2$-torsion of the narrow class group and dual narrow class group of a quadratic number field. This is now known as Gauss’s genus theory. In this paper, we extend Gauss’s work to the setting of multi-quadratic number fields. To this end, we introduce and parametrize the categories of expansion groups and expansion Lie algebras, giving an explicit description for the universal objects of these categories. This description is inspired by the ideas of Smith [ 16] in his recent breakthrough on Goldfeld’s conjecture and the Cohen–Lenstra conjectures. Our main result shows that the maximal unramified multi-quadratic extension $L$ of a multi-quadratic number field $K$ can be reconstructed from the set of generalized governing expansions supported in the set of primes that ramify in $K$. This provides a recursive description for the group $\textrm{Gal}(L/\mathbb{Q})$ and a systematic procedure to construct the field $L$. A special case of our main result gives an upper bound for the size of $\textrm{Cl}^{+}(K)[2]$.


1987 ◽  
Vol 107 ◽  
pp. 135-146 ◽  
Author(s):  
Yoshitaka Odai

Let I be an odd prime number and let K be an algebraic number field of degree I. Let M denote the genus field of K, i.e., the maximal extension of K which is a composite of an absolute abelian number field with K and is unramified at all the finite primes of K. In [4] Ishida has explicitly constructed M. Therefore it is of some interest to investigate unramified cyclic extensions of K of degree l, which are not contained in M. In the preceding paper [6] we have obtained some results about this problem in the case that K is a pure cubic field. The purpose of this paper is to extend those results.


Author(s):  
Andrew Best ◽  
Karen Huan ◽  
Nathan McNew ◽  
Steven J. Miller ◽  
Jasmine Powell ◽  
...  

In Ramsey theory one wishes to know how large a collection of objects can be while avoiding a particular substructure. A problem of recent interest has been to study how large subsets of the natural numbers can be while avoiding three-term geometric progressions. Building on recent progress on this problem, we consider the analogous problem over quadratic number fields. We first construct high-density subsets of the algebraic integers of an imaginary quadratic number field that avoid three-term geometric progressions. When unique factorization fails, or over a real quadratic number field, we instead look at subsets of ideals of the ring of integers. Our approach here is to construct sets ‘greedily’, a generalization of the greedy set of rational integers considered by Rankin. We then describe the densities of these sets in terms of values of the Dedekind zeta function. Next, we consider geometric-progression-free sets with large upper density. We generalize an argument by Riddell to obtain upper bounds for the upper density of geometric-progression-free subsets, and construct sets avoiding geometric progressions with high upper density to obtain lower bounds for the supremum of the upper density of all such subsets. Both arguments depend critically on the elements with small norm in the ring of integers.


1952 ◽  
Vol 4 ◽  
pp. 125-129
Author(s):  
Tadasi Nakayama

In a recent paper [3] Tannaka gave an interesting ordering theorem for subfields of a p-adic number field, The purpose of the present note is firstly to observe, on modifying Tannaka’s argument a little, that his restriction to those subfields over which the original field is abelian may be removed and in fact the theorem holds for arbitrary fields which are not p-adic number fields, indeed in a much refined form, and secondly to formulate a similar ordering theorem for algebraic number fields in terms of idèle-class groups in place of element groups.


2010 ◽  
Vol 06 (05) ◽  
pp. 1169-1182
Author(s):  
JING LONG HOELSCHER

This paper studies Galois extensions over real quadratic number fields or cyclotomic number fields ramified only at one prime. In both cases, the ray class groups are computed, and they give restrictions on the finite groups that can occur as such Galois groups. Let [Formula: see text] be a real quadratic number field with a prime P lying above p in ℚ. If p splits in K/ℚ and p does not divide the big class number of K, then any pro-p extension of K ramified only at P is finite cyclic. If p is inert in K/ℚ, then there exist infinite extensions of K ramified only at P. Furthermore, for big enough integer k, the ray class field (mod Pk+1) is obtained from the ray class field (mod Pk) by adjoining ζpk+1. In the case of a regular cyclotomic number field K = ℚ(ζp), the explicit structure of ray class groups (mod Pk) is given for any positive integer k, where P is the unique prime in K above p.


2019 ◽  
Vol 15 (02) ◽  
pp. 353-360
Author(s):  
Sudesh K. Khanduja

For an algebraic number field [Formula: see text], let [Formula: see text] denote the discriminant of an algebraic number field [Formula: see text]. It is well known that if [Formula: see text] are algebraic number fields with coprime discriminants, then [Formula: see text] are linearly disjoint over the field [Formula: see text] of rational numbers and [Formula: see text], [Formula: see text] being the degree of [Formula: see text] over [Formula: see text]. In this paper, we prove that the converse of this result holds in relative extensions of algebraic number fields. We also give some more necessary and sufficient conditions for the analogue of the above equality to hold for algebraic number fields [Formula: see text] linearly disjoint over [Formula: see text].


1984 ◽  
Vol 93 ◽  
pp. 133-148 ◽  
Author(s):  
Katsuya Miyake

Let k be an algebraic number field of finite degree, and K a finite Galois extension of k. A central extension L of K/k is an algebraic number field which contains K and is normal over k, and whose Galois group over K is contained in the center of the Galois group Gal(L/k). We denote the maximal abelian extensions of k and K in the algebraic closure of k by kab and Kab respectively, and the maximal central extension of K/k by MCK/k. Then we have Kab⊃MCK/k⊃kab·K.


1991 ◽  
Vol 43 (2) ◽  
pp. 325-329 ◽  
Author(s):  
B. Brindza

Given a finitely generated multiplicative subgroup Us in a number field, we employ a simple argument from the geometry of numbers and an inequality on multiplicative dependence in number fields to obtain a minimal set of generators consisting of elements of relatively small height.


1978 ◽  
Vol 26 (1) ◽  
pp. 26-30 ◽  
Author(s):  
P. E. Blanksby ◽  
J. H. Loxton

AbstractThis note deals with some properties of algebraic number fields generated by numbers having all their conjugates on a circle. In particular, it is shown that an algebraic number field is a CM-field if and only if it is generated over the rationals by an element (not equal to ±1) whose conjugate all lie on the unit circle.Subject classification (Amer. Math. Soc. (MOS) 1970): 12 A 15, 12 A 40, 14 K 22.


Sign in / Sign up

Export Citation Format

Share Document